diff options
author | Jordan Halase <jordan@halase.me> | 2019-10-25 16:53:00 -0500 |
---|---|---|
committer | Jordan Halase <jordan@halase.me> | 2019-10-25 16:53:00 -0500 |
commit | 027a512c762e0ac5e46908f533b94127010de565 (patch) | |
tree | 80427017f8cfe03b6bbffc67a6c0b43e3d4ef25c |
Initial commit
-rw-r--r-- | .gitignore | 3 | ||||
-rw-r--r-- | Makefile | 27 | ||||
-rw-r--r-- | bk.c | 754 | ||||
-rw-r--r-- | build.sh | 1 | ||||
-rw-r--r-- | export.jch | bin | 0 -> 421516 bytes | |||
-rw-r--r-- | main.c | 1906 | ||||
-rw-r--r-- | shader.frag | 48 | ||||
-rw-r--r-- | shader.vert | 27 | ||||
-rw-r--r-- | vk_mem_alloc.cc | 2 | ||||
-rw-r--r-- | vk_mem_alloc.h | 17087 |
10 files changed, 19855 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..babaebf --- /dev/null +++ b/.gitignore @@ -0,0 +1,3 @@ +main +*.o +*.spv diff --git a/Makefile b/Makefile new file mode 100644 index 0000000..e7e4d85 --- /dev/null +++ b/Makefile @@ -0,0 +1,27 @@ +DEBUG=-DVULKAN_VALIDATION -g +WARN=-Wdouble-promotion +FEATURE=-DHAVE_MSAA + +GLSLC=glslc +CFLAGS=-I$(VULKAN_SDK)/include $(FEATURE) $(DEBUG) $(WARN) +LDFLAGS=-L$(VULKAN_SDK)/lib -lvulkan + +CFLAGS+=-I../pugl +LDFLAGS+=-L../pugl/build -lpugl_x11 + +all: main shaders + +main: main.o vk_mem_alloc.o + $(CXX) $^ $(LDFLAGS) -o $@ + +main.o: main.c + +vk_mem_alloc.o: vk_mem_alloc.h + +shaders: vert.spv frag.spv + +vert.spv: shader.vert + $(GLSLC) $^ -o $@ + +frag.spv: shader.frag + $(GLSLC) $^ -o $@ @@ -0,0 +1,754 @@ +#include <stdio.h> +#include <stdlib.h> + +#include <SDL2/SDL.h> +#include <SDL2/SDL_vulkan.h> +#include <vulkan/vulkan.h> + +#define ERRFQ(...) \ + do { \ + fprintf(stderr, __VA_ARGS__); \ + exit(1); \ + } while(0) + +#define ERRQ(str) \ + do { \ + fputs((str), stderr); \ + fputc('\n', stderr); \ + exit(1); \ + } while(0) + +uint8_t *read_file(const char *path, size_t size) +{ + FILE *file = fopen(path, "rb"); + if (!file) { + return NULL; + } + fseek(file, 0, SEEK_END); + size_t len = ftell(file); + rewind(file); + uint8_t *buf = malloc(len); + fread(buf, len, 1, file); + fclose(file); + *size = len; + return buf; +} + +/* + * Modifications for Vulkan: + * Row-column flipped + * Negative y + * Expect coordinates on range [0, 1] + */ +void perspective_init(float matrix[4][4], + const float fov, + const float aspect, + const float znear, + const float zfar) +{ + memset(matrix, 0, 16*sizeof(float)); + const float f = 1.0f / tanf(0.5*fov); + matrix[0][0] = f / aspect; + matrix[1][1] = -f; + matrix[2][2] = -znear/(zfar - znear) - 1.0f; + matrix[3][2] = -zfar*znear/(zfar - znear); + matrix[2][3] = -1.0f; +} + +void identity_init(float matrix[4][4]) +{ + memset(matrix, 0, 16*sizeof(float)); + matrix[0][0] = 1.0f; + matrix[1][1] = 1.0f; + matrix[2][2] = 1.0f; + matrix[3][3] = 1.0f; +} + +struct Uniform { + float model[4][4]; + float view[4][4]; + float proj[4][4]; +}; + +static VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback( + VkDebugReportFlagsEXT flags, + VkDebugReportObjectTypeEXT objType, + uint64_t obj, + size_t location, + int32_t code, + const char *layerPrefix, + const char *msg, + void *userData + ) +{ + fprintf(stderr, "Validation layer: %s\n", msg); + return VK_FALSE; +} + +VkResult CreateDebugReportCallbackEXT( + VkInstance instance, + const VkDebugReportCallbackCreateInfoEXT *pCreateInfo, + const VkAllocationCallbacks *pAllocator, + VkDebugReportCallbackEXT *pCallback + ) +{ + PFN_vkCreateDebugReportCallbackEXT func = (void*)vkGetInstanceProcAddr(instance, + "vkCreateDebugReportCallbackEXT"); + if (func) { + return func(instance, pCreateInfo, pAllocator, pCallback); + } else { + return VK_ERROR_EXTENSION_NOT_PRESENT; + } +} + +void DestroyDebugReportCallbackEXT(VkInstance instance, VkDebugReportCallbackEXT callback, + const VkAllocationCallbacks *pAllocator) +{ + PFN_vkDestroyDebugReportCallbackEXT func = (void*)vkGetInstanceProcAddr(instance, + "vkDestroyDebugReportCallbackEXT"); + if (func) { + func(instance, callback, pAllocator); + } +} + +SDL_Window *win; +VkInstance instance; +VkDebugReportCallbackEXT callback; +VkSurfaceKHR surface; +VkPhysicalDevice physicalDevice; +uint32_t qIndex; +uint32_t nImages; +VkDevice device; +VkSurfaceFormatKHR format; +VkCommandPool cmdPool; +VkCommandBuffer cmdBuffers; +VkSwapchainKHR swapchain; +VkImage *scImages; +VkImageView *scImageViews; +VkImage depthImage; +VkDeviceMemory depthMem; +VkImageView depthView; +VkExtent2D extent; +VkQueue graphicsQueue; +VkQueue presentQueue; + +static void createInstance() +{ + VkApplicationInfo appInfo = { + .sType = VK_STRUCTURE_TYPE_APPLICATION_INFO, + .pApplicationName = "VulkanGame", + .applicationVersion = VK_MAKE_VERSION(1, 0, 0), + .pEngineName = "VulkanGameEngine", + .engineVersion = VK_MAKE_VERSION(1, 0, 0), + .apiVersion = VK_API_VERSION_1_0 + }; + + unsigned i, nRequired; + if (!SDL_Vulkan_GetInstanceExtensions(win, &nRequired, NULL)) { + ERRFQ("Could not get number of instance extensions\n"); + } + static const char *const additional[] = { + VK_EXT_DEBUG_REPORT_EXTENSION_NAME + }; + const unsigned nAdditional = sizeof(additional) / sizeof(additional[0]); + const uint32_t nExtensions = nRequired + nAdditional; + const char **extensions = malloc(sizeof(const char*) * nExtensions); + if (!SDL_Vulkan_GetInstanceExtensions(win, &nRequired, extensions)) { + /* OS will handle memory freeing */ + ERRQ(SDL_GetError()); + } + for (i = 0; i < nAdditional; ++i) { + extensions[nRequired + i] = additional[i]; + } + + /* Just printing verbosely */ + for (i = 0; i < nExtensions; ++i) { + printf("%s\n", extensions[i]); + } + printf("\n"); + +#if 1 + const uint32_t nLayers = 1; + static const char *const layers[] = { + "VK_LAYER_LUNARG_standard_validation" + }; +#endif + VkInstanceCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO, + .pApplicationInfo = &appInfo, + .enabledExtensionCount = nExtensions, + .ppEnabledExtensionNames = extensions, +#if 1 + .enabledLayerCount = nLayers, + .ppEnabledLayerNames = layers +#endif + }; + VkResult result; + if ((result = vkCreateInstance(&createInfo, NULL, &instance)) != VK_SUCCESS) { + /* OS will handle memory freeing */ + ERRFQ("Could not create Vulkan instance: %d\n", result); + } + free(extensions); +} + +static void createDebugReporter() +{ + VkDebugReportCallbackCreateInfoEXT createInfo = { + .sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT, + .flags = VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT, + .pfnCallback = debugCallback + }; + if (CreateDebugReportCallbackEXT(instance, &createInfo, NULL, &callback) != VK_SUCCESS) { + ERRQ("Could not create debug reporter"); + } +} + +static void selectPhysicalDevice(const char *hint) +{ + uint32_t nDevices; + vkEnumeratePhysicalDevices(instance, &nDevices, NULL); + if (!nDevices) { + ERRQ("No physical devices found"); + } + VkPhysicalDevice *devices = malloc(nDevices * sizeof(*devices)); + vkEnumeratePhysicalDevices(instance, &nDevices, devices); + + /* Just printing verbosely */ + for (uint32_t i = 0; i < nDevices; ++i) { + VkPhysicalDeviceProperties props; + vkGetPhysicalDeviceProperties(devices[i], &props); + printf("%s\n", props.deviceName); + } + + /* FIXME: Blindly choosing the first device */ + physicalDevice = devices[0]; + + uint32_t nQueueFamilies = 0; + vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &nQueueFamilies, NULL); + VkQueueFamilyProperties *qprops = malloc(nQueueFamilies * sizeof(*qprops)); + vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &nQueueFamilies, qprops); + + for (qIndex = 0; qIndex < nQueueFamilies; ++qIndex) { + if (qprops[qIndex].queueFlags & VK_QUEUE_GRAPHICS_BIT) { + break; + } + } + if (qIndex >= nQueueFamilies || nQueueFamilies <= 0) { + ERRQ("No queue families capable of graphics"); + } + + VkBool32 canSurface; + vkGetPhysicalDeviceSurfaceSupportKHR(physicalDevice, qIndex, surface, &canSurface); + if (!canSurface) { + /* Strange devices may be accommodated for but not for now */ + ERRQ("Graphics device cannot output a surface"); + } + + VkBool32 canSwapchain = 0; + uint32_t nExtensions; + vkEnumerateDeviceExtensionProperties(physicalDevice, NULL, &nExtensions, NULL); + VkExtensionProperties *availableExtensions = malloc(nExtensions * sizeof(*availableExtensions)); + vkEnumerateDeviceExtensionProperties(physicalDevice, NULL, &nExtensions, availableExtensions); + + for (uint32_t i = 0; i < nExtensions; ++i) { + if (!strcmp(availableExtensions[i].extensionName, VK_KHR_SWAPCHAIN_EXTENSION_NAME)) { + canSwapchain = 1; + break; + } + } + if (!canSwapchain) { + ERRQ("Graphics device not swapchain capable"); + } + free(availableExtensions); + free(qprops); + free(devices); +} + +static void createLogicalDevice() +{ + VkPhysicalDeviceFeatures features; + vkGetPhysicalDeviceFeatures(physicalDevice, &features); + float qPriority = 1.0f; + VkDeviceQueueCreateInfo qCreateInfo = { + .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, + .queueFamilyIndex = qIndex, + .queueCount = 1, + .pQueuePriorities = &qPriority + }; + + const char *const swapchainName = VK_KHR_SWAPCHAIN_EXTENSION_NAME; + VkDeviceCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO, + .pQueueCreateInfos = &qCreateInfo, + .queueCreateInfoCount = 1, + .pEnabledFeatures = &features, + .enabledExtensionCount = 1, + .ppEnabledExtensionNames = &swapchainName + }; + + if (vkCreateDevice(physicalDevice, &createInfo, NULL, &device)) { + ERRQ("Could not create logical device"); + } +} + +static void destroyLogicalDevice() +{ + vkDestroyDevice(device, NULL); +} + +static void createCommandPool() +{ + VkCommandPoolCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, + .queueFamilyIndex = qIndex + }; + VkResult result; + if ((result = vkCreateCommandPool(device, &createInfo, NULL, &cmdPool)) != VK_SUCCESS) { + ERRFQ("Could not create command pool: %d\n", result); + } +} + +static void destroyCommandPool() +{ + vkDestroyCommandPool(device, cmdPool, NULL); +} + +static void createCommandBuffers() +{ + VkCommandBufferAllocateInfo allocInfo = { + .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, + .commandPool = cmdPool, + .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY, + .commandBufferCount = 1 + }; + VkResult result; + if ((result = vkAllocateCommandBuffers(device, &allocInfo, &cmdBuffers)) != VK_SUCCESS) { + ERRFQ("Could not create command buffers: %d\n", result); + } +} + +static void destroyCommandBuffers() +{ + vkFreeCommandBuffers(device, cmdPool, 1, &cmdBuffers); +} + +static void createSwapchain() +{ + struct { + VkSurfaceCapabilitiesKHR capabilities; + VkSurfaceFormatKHR *formats; + VkPresentModeKHR *presentModes; + } sc = {0}; + + vkGetPhysicalDeviceSurfaceCapabilitiesKHR(physicalDevice, surface, &sc.capabilities); + uint32_t nFormats; + vkGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, surface, &nFormats, NULL); + if (!nFormats) { + ERRQ("No surface formats available"); + } + sc.formats = malloc(nFormats * sizeof(*sc.formats)); + vkGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, surface, &nFormats, sc.formats); + + uint32_t nPresentModes; + vkGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, surface, &nPresentModes, NULL); + if (!nPresentModes) { + ERRQ("No surface present modes available"); + } + sc.presentModes = malloc(nPresentModes * sizeof(*sc.presentModes)); + vkGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, surface, &nPresentModes, sc.presentModes); + + for (uint32_t i = 0; i < nFormats; ++i) { + VkSurfaceFormatKHR want = { + VK_FORMAT_B8G8R8A8_UNORM, // BGRA + VK_COLOR_SPACE_SRGB_NONLINEAR_KHR + }; + if (sc.formats[i].format == VK_FORMAT_UNDEFINED) { + format = want; + fprintf(stderr, "Obtained wanted surface format on first try\n"); + break; + } + if (sc.formats[i].format == want.format && sc.formats[i].colorSpace == want.colorSpace) { + format = want; + fprintf(stderr, "Obtained wanted format on try %d/%d\n", i+1, nFormats); + break; + } + } + + /* FIXME: Just assuming this is available */ + VkPresentModeKHR presentMode = VK_PRESENT_MODE_FIFO_KHR; + + int width, height; + SDL_Vulkan_GetDrawableSize(win, &width, &height); + extent.width = width; + extent.height = height; + + nImages = sc.capabilities.minImageCount + 1; + if (sc.capabilities.maxImageCount > 0 && nImages > sc.capabilities.maxImageCount) { + /* Clamp to max image count if too many requested */ + nImages = sc.capabilities.maxImageCount; + } + + VkSwapchainCreateInfoKHR createInfo = { + .sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR, + .surface = surface, + .minImageCount = nImages, + .imageFormat = format.format, + .imageExtent = extent, + .imageArrayLayers = 1, + .imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, + .imageSharingMode = VK_SHARING_MODE_EXCLUSIVE, // assuming same family + .preTransform = sc.capabilities.currentTransform, + .compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR, + .presentMode = presentMode, + .clipped = VK_TRUE, + .oldSwapchain = VK_NULL_HANDLE + }; + + VkResult result; + if ((result = vkCreateSwapchainKHR(device, &createInfo, NULL, &swapchain)) != VK_SUCCESS) { + ERRFQ("Could not create swapchain: %d\n", result); + } + free(sc.presentModes); + free(sc.formats); +} + +static void destroySwapchain() +{ + if (swapchain) { + vkDestroySwapchainKHR(device, swapchain, NULL); + } + swapchain = NULL; +} + +/* Allocates and reallocates memory */ +static void createSwapchainImages() +{ + vkGetSwapchainImagesKHR(device, swapchain, &nImages, NULL); + scImages = realloc(scImages, nImages * sizeof(*scImages)); + vkGetSwapchainImagesKHR(device, swapchain, &nImages, scImages); + scImageViews = realloc(scImageViews, nImages * sizeof(*scImageViews)); + + for (uint32_t i = 0; i < nImages; ++i) { + VkImageViewCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, + .image = scImages[i], + .viewType = VK_IMAGE_VIEW_TYPE_2D, + .format = format.format, + .components.r = VK_COMPONENT_SWIZZLE_IDENTITY, + .components.g = VK_COMPONENT_SWIZZLE_IDENTITY, + .components.b = VK_COMPONENT_SWIZZLE_IDENTITY, + .components.a = VK_COMPONENT_SWIZZLE_IDENTITY, + .subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, + .subresourceRange.baseMipLevel = 0, + .subresourceRange.levelCount = 1, + .subresourceRange.baseArrayLayer = 0, + .subresourceRange.layerCount = 1 + + }; + if (vkCreateImageView(device, &createInfo, NULL, &scImageViews[i]) != VK_SUCCESS) { + ERRQ("Could not create swapchain image views"); + } + } +} + +static void destroySwapchainImages() +{ + for (uint32_t i = 0; i < nImages; ++i) { + vkDestroyImageView(device, scImageViews[i], NULL); + } + free(scImageViews); + free(scImages); + scImageViews = NULL; + scImages = NULL; +} + +static void createDepthBuffer() +{ + VkImageCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, + .imageType = VK_IMAGE_TYPE_2D, + .format = VK_FORMAT_D32_SFLOAT, + .extent.width = extent.width, + .extent.height = extent.height, + .extent.depth = 1, + .mipLevels = 1, + .arrayLayers = 1, + .samples = VK_SAMPLE_COUNT_1_BIT, + .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, + .usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, + .sharingMode = VK_SHARING_MODE_EXCLUSIVE, + }; + VkResult result; + if ((result = vkCreateImage(device, &createInfo, NULL, &depthImage)) != VK_SUCCESS) { + ERRFQ("Could not create depth image: %d\n", result); + } + VkPhysicalDeviceMemoryProperties memProps; + vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memProps); + VkMemoryRequirements memReq; + vkGetImageMemoryRequirements(device, depthImage, &memReq); + uint32_t typeFilter = memReq.memoryTypeBits; + uint32_t memType; + uint32_t props = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + for (memType = 0; memType < memProps.memoryTypeCount; ++memType) { + if (typeFilter & (1<<memType) && (memProps.memoryTypes[memType].propertyFlags & props) == props) { + break; + } + } + VkMemoryAllocateInfo allocInfo = { + .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, + .allocationSize = memReq.size, + .memoryTypeIndex = memType + }; + if ((result = vkAllocateMemory(device, &allocInfo, NULL, &depthMem)) != VK_SUCCESS) { + ERRFQ("Could not allocate depth buffer memory: %d\n", result); + } + if ((result = vkBindImageMemory(device, depthImage, depthMem, 0)) != VK_SUCCESS) { + ERRFQ("Could not bind depth buffer image memory: %d\n", result); + } + + VkImageViewCreateInfo viewInfo = { + .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, + .image = depthImage, + .format = VK_FORMAT_D32_SFLOAT, + .components.r = VK_COMPONENT_SWIZZLE_R, + .components.g = VK_COMPONENT_SWIZZLE_G, + .components.b = VK_COMPONENT_SWIZZLE_B, + .components.a = VK_COMPONENT_SWIZZLE_A, + .subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT, + .subresourceRange.baseMipLevel = 0, + .subresourceRange.levelCount = 1, + .subresourceRange.baseArrayLayer = 0, + .subresourceRange.layerCount = 1, + .viewType = VK_IMAGE_VIEW_TYPE_2D, + }; + if ((result = vkCreateImageView(device, &viewInfo, NULL, &depthView)) != VK_SUCCESS) { + ERRFQ("Could not create depth buffer image view: %d\n", result); + } +} + +static void destroyDepthBuffer() +{ + vkDestroyImageView(device, depthView, NULL); + vkFreeMemory(device, depthMem, NULL); + vkDestroyImage(device, depthImage, NULL); +} + +void initVulkan() +{ + createInstance(); + createDebugReporter(); + if (!SDL_Vulkan_CreateSurface(win, instance, &surface)) { + ERRQ(SDL_GetError()); + } +} + +void deinitVulkan() +{ + vkDestroySurfaceKHR(instance, surface, NULL); + DestroyDebugReportCallbackEXT(instance, callback, NULL); + vkDestroyInstance(instance, NULL); +} + +void beginVulkan() +{ + selectPhysicalDevice(NULL); + createLogicalDevice(); + createCommandPool(); + createCommandBuffers(); + vkGetDeviceQueue(device, qIndex, 0, &graphicsQueue); + vkGetDeviceQueue(device, qIndex, 0, &presentQueue); + createSwapchain(); + createSwapchainImages(); + createDepthBuffer(); +} + +void endVulkan() +{ + destroyDepthBuffer(); + destroySwapchainImages(); + destroySwapchain(); + destroyCommandBuffers(); + destroyCommandPool(); + destroyLogicalDevice(); +} + +struct Uniform uniData; +VkBuffer uniBuffer; +VkDeviceMemory uniMem; + +static void createUniformBuffer() +{ + VkBufferCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, + .usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, + .size = sizeof(struct Uniform), + .sharingMode = VK_SHARING_MODE_EXCLUSIVE + }; + + VkResult result; + if ((result = vkCreateBuffer(device, &createInfo, NULL, &uniBuffer)) != VK_SUCCESS) { + ERRFQ("Could not create uniform buffer: %d\n", result); + } + + VkPhysicalDeviceMemoryProperties memProps; + vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memProps); + VkMemoryRequirements memReq; + vkGetBufferMemoryRequirements(device, uniBuffer, &memReq); + uint32_t typeFilter = memReq.memoryTypeBits; + uint32_t memType; + uint32_t props = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; + for (memType = 0; memType < memProps.memoryTypeCount; ++memType) { + if (typeFilter & (1<<memType) && (memProps.memoryTypes[memType].propertyFlags & props) == props) { + break; + } + } + + VkMemoryAllocateInfo allocInfo = { + .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, + .allocationSize = memReq.size, + .memoryTypeIndex = memType + }; + + if ((result = vkAllocateMemory(device, &allocInfo, NULL, &uniMem)) != VK_SUCCESS) { + ERRFQ("Could not allocate uniform buffer memory: %d\n", result); + } + + if ((result = vkBindBufferMemory(device, uniBuffer, uniMem, 0)) != VK_SUCCESS) { + ERRFQ("Could not bind uniform buffer memory: %d\n", result); + } +} + +static void populateUniformBuffer() +{ + identity_init(uniData.model); + identity_init(uniData.view); + identity_init(uniData.proj); + VkResult result; + void *data; + if ((result = vkMapMemory(device, uniMem, 0, sizeof(uniData), 0, &data)) != VK_SUCCESS) { + ERRFQ("Could not map uniform buffer memory: %d\n", result); + } + memcpy(data, &uniData, sizeof(uniData)); + vkUnmapMemory(device, uniMem); +} + +VkDescriptorSetLayout descriptorSetLayout; + +static void createDescriptorSetLayout() +{ + VkDescriptorSetLayoutBinding layoutBinding = { + .binding = 0, + .descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, + .descriptorCount = 1, + .stageFlags = VK_SHADER_STAGE_VERTEX_BIT + }; + VkDescriptorSetLayoutCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_CREATE_INFO, + .bindingCount = 1, + .pBindings = &layoutBinding + }; + VkResult result; + if ((result = vkCreateDescriptorSetLayout(device, &createInfo, NULL, descriptorSetLayout)) != VK_SUCCESS) { + ERRFQ("Could not create descriptor set layout: %d\n", result); + } +} + +static void createPipelineLayout() +{ + VkPipelineLayoutCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, + .pushConstantRangeCount = 0, + .setLayoutCount = 1, // number of descriptor sets + .pSetLayouts = &descriptorSetLayout + }; + VkResult result; + if ((result = vkCreatePipelineLayout(device, &createInfo, NULL, &pipelineLayout)) != VK_SUCCESS) { + ERRFQ("Could not create pipeline layout: %d\n", result); + } +} + +VkShaderModule vShaderModule; +VkShaderModule fShaderModule; + +static void createShaderModules() +{ + size_t vertLen, fragLen; + uint8_t *vertCode = read_file("vert.spv", &vertLen); + if (!vertCode) { + ERRQ("Could not read vert.spv"); + } + uint8_t *fragCode = read_file("frag.spv", &fragLen); + if (!fragCode) { + ERRQ("Could not read frag.spv"); + } + + VkShaderModuleCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO, + .codeSize = vertLen, + .pCode = (void*)vertCode + }; + + VkResult result; + if ((result = vkCreateShaderModule(device, &createInfo, NULL, &vShaderModule)) != VK_SUCCESS) { + ERRFQ("Could not create vertex shader module: %d\n", result); + } + + createInfo.codeSize = fraglen; + createInfo.pCode = (void*)fragCode; + if ((result = vkCreateShaderModule(device, &createInfo, NULL, &fShaderModule)) != VK_SUCCESS) { + ERRFQ("Could not create fragment shader module: %d\n", result); + } + + free(vertCode); + free(fragCode); +} + +static void createGraphicsPipeline + +void setupScene() +{ + createUniformBuffer(); + populateUniformBuffer(); + createDescriptorSetLayout(); + createPipelineLayout(); + createShaderModules(); +} + +int main(int argc, char **argv) +{ + if (SDL_Init(SDL_INIT_EVERYTHING) < 0) { + ERRQ(SDL_GetError()); + } + if (SDL_Vulkan_LoadLibrary(NULL)) { + ERRQ(SDL_GetError()); + } + win = SDL_CreateWindow( + "Vulkan Window", + SDL_WINDOWPOS_CENTERED, + SDL_WINDOWPOS_CENTERED, + 1280, + 720, + SDL_WINDOW_VULKAN + ); + if (!win) { + ERRQ(SDL_GetError()); + } + initVulkan(); + beginVulkan(); + + SDL_Event e; + while (1) { + while (SDL_PollEvent(&e)) { + if (e.type == SDL_QUIT) { + goto quit; + } + } + } +quit: + endVulkan(); + deinitVulkan(); + SDL_DestroyWindow(win); + SDL_Vulkan_UnloadLibrary(); + SDL_Quit(); + return 0; +} diff --git a/build.sh b/build.sh new file mode 100644 index 0000000..a0776bb --- /dev/null +++ b/build.sh @@ -0,0 +1 @@ +gcc main.c -I/usr/local/include/SDL2 -D_REENTRANT -L/usr/local/lib -Wl,-rpath,/usr/local/lib -Wl,--enable-new-dtags -lSDL2 -lvulkan -lm -g diff --git a/export.jch b/export.jch Binary files differnew file mode 100644 index 0000000..ea30153 --- /dev/null +++ b/export.jch @@ -0,0 +1,1906 @@ +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <math.h> + +#include <X11/Xlib.h> + +#include <vulkan/vulkan.h> +#include <vulkan/vulkan_xlib.h> + +#include "pugl/pugl.h" + +#include "vk_mem_alloc.h" + +#define ERRFQ(fmt, ...) \ + do { \ + fprintf(stderr, fmt __VA_OPT__(,) __VA_ARGS__); \ + exit(1); \ + } while(0) + +#define ERRQ(str) ERRFQ("%s\n", str) + +#define PI 3.14159265359f +#define TWOPI 6.28318530718f +#define DEGREES(x) ((x)*PI/180.0f) +#define MAT4X4_SIZE (16*sizeof(float)) + +#define MIN(a, b) ((a) <= (b) ? (a) : (b)) +#define MAX(a, b) ((a) >= (b) ? (a) : (b)) +#define CLAMP(x, l, h) ((x) <= (l) ? (l) : (x) >= (h) ? (h) : (x)) + +#ifdef HAVE_MSAA +static const unsigned msaaEnabled = 1; +static const VkSampleCountFlagBits msaaSampleCount = VK_SAMPLE_COUNT_8_BIT; +#else +static const unsigned msaaEnabled = 0; +static const VkSampleCountFlagBits msaaSampleCount = VK_SAMPLE_COUNT_1_BIT; +#endif + +static const VkFormat depthFormat = VK_FORMAT_D24_UNORM_S8_UINT; + +#define TIMER_INTERVAL 500 + +static ssize_t get_file_size(FILE *fp) +{ +#if defined(__linux__) + +#include <sys/stat.h> + const int fd = fileno(fp); + struct stat st; + if (fstat(fd, &st) == -1) { + return -1; + } + return st.st_size; + +#else +#error "Cannot get file sizes on this system" +#endif +} + +uint8_t *read_file(const char *path, size_t *size) +{ +#if 0 + SDL_RWops *rw = SDL_RWFromFile(path, "r"); + if (!rw) { + *size = 0; + return NULL; + } + *size = SDL_RWsize(rw); + uint8_t *buf = malloc(*size); + SDL_RWread(rw, buf, *size, 1); + SDL_RWclose(rw); + return buf; +#else + FILE *fp = fopen(path, "rb"); + if (!fp) { + *size = 0; + return NULL; + } + const ssize_t result = get_file_size(fp); + if (result == -1) { + *size = 0; + return NULL; + } else { + *size = result; + } + uint8_t *buf = malloc(*size); + size_t r = 0; + while ((r = fread(buf, *size, 1, fp))) { + } + fclose(fp); + return buf; +#endif +} + +/* ALL matrices are column major + * + * Modifications for Vulkan: + * Invert y axis + * Expect z clip coordinates on range [0, 1] + */ +static void load_perspective(float matrix[4][4], + const float fov, + const float aspect, + const float znear, + const float zfar) +{ + memset(matrix, 0, MAT4X4_SIZE); + const float f = 1.0f/tanf(0.5f*fov); + matrix[0][0] = f/aspect; + matrix[1][1] = -f; + matrix[2][2] = -zfar/(zfar - znear); + matrix[3][2] = -zfar*znear/(zfar - znear); + matrix[2][3] = -1.0f; +} + +static void matmul4(const float A[4][4], + const float B[4][4], + float C[4][4]) +{ + memset(C, 0, MAT4X4_SIZE); + int i, j, k; + for (i = 0; i < 4; ++i) { + for (j = 0; j < 4; ++j) { + for (k = 0; k < 4; ++k) { + C[j][i] += A[k][i] * B[j][k]; + } + } + } +} + +static void matvecmul4(const float M[4][4], + const float *restrict V, + float *restrict C) +{ + int i, j; + for (i = 0; i < 4; ++i) { + C[i] = 0; + for (j = 0; j < 4; ++j) { + C[i] += M[j][i] * V[j]; + } + } +} + +static void load_identity(float matrix[4][4]) +{ + memset(matrix, 0, MAT4X4_SIZE); + matrix[0][0] = 1.0f; + matrix[1][1] = 1.0f; + matrix[2][2] = 1.0f; + matrix[3][3] = 1.0f; +} + +static void load_rotation_y(float matrix[4][4], const float angle) +{ + memset(matrix, 0, MAT4X4_SIZE); + const float cosangle = cosf(angle); + const float sinangle = sinf(angle); + matrix[0][0] = cosangle; + matrix[2][0] = sinangle; + matrix[0][2] = -sinangle; + matrix[2][2] = cosangle; + matrix[1][1] = 1.0; + matrix[3][3] = 1.0; +} + +static void load_location(float matrix[4][4], + const float x, + const float y, + const float z) +{ + load_identity(matrix); + matrix[3][0] = x; + matrix[3][1] = y; + matrix[3][2] = z; +} + +struct Uniform { + float model[4][4]; + float view[4][4]; + float proj[4][4]; +}; + +/* Set once when physical device is chosen, do not modify otherwise */ +static VkPhysicalDeviceMemoryProperties memoryProperties; +static VkPhysicalDeviceProperties deviceProperties; + +static VmaAllocator vmaAllocator; + +PuglWorld *world; +PuglView *view; +static VkDevice device; +static VkInstance instance; +static VkDebugReportCallbackEXT callback; +static VkSurfaceKHR surface; +static VkPhysicalDevice physicalDevice; +static uint32_t graphicsIndex; +static uint32_t transferIndex; +static VkQueue transferQueue; +static VkQueue graphicsQueue; +static VkCommandPool commandPool; +static VkCommandPool transferPool; +static VkCommandBuffer *commandBuffers; +static VkSwapchainKHR rawSwapchain; +static VkSwapchainKHR oldRawSwapchain; +static uint32_t nImages; +static VkSurfaceFormatKHR surfaceFormat; +static VkImage *swapchainImages; +static VkImageView *swapchainImageViews; +static VkExtent2D swapchainExtent; +static VkImage depthImage; +static VmaAllocation depthVma; +static VkImageView depthImageView; + +#if 1 +/* TODO: Get rid of this because we're using VMA */ +static uint32_t getMemType(const VkMemoryRequirements *memReq, + const VkMemoryPropertyFlags flags) +{ + const uint32_t bits = memReq->memoryTypeBits; + uint32_t type; + for (type = 0; type < memoryProperties.memoryTypeCount; ++type) { + if (bits & (1<<type) && (memoryProperties.memoryTypes[type].propertyFlags & flags) == flags) { + break; + } + } + if (type >= memoryProperties.memoryTypeCount) { + ERRFQ("No suitable memory type found\n"); + } + return type; +} +#endif + +/* Undefined behavior if `offset` is not a power of two */ +static VkDeviceSize getNearestAlignment(const VkDeviceSize offset, const VkDeviceSize alignment) +{ + const VkDeviceSize mask = alignment - 1; + if (offset & mask) { + return offset + alignment - (offset & mask); + } + return offset; +} + +static void createInstance() +{ + const VkApplicationInfo appInfo = { + .sType = VK_STRUCTURE_TYPE_APPLICATION_INFO, + .pApplicationName = "VulkanGame", + .applicationVersion = VK_MAKE_VERSION(1, 0, 0), + .pEngineName = "VulkanGameEngine", + .engineVersion = VK_MAKE_VERSION(1, 0, 0), + .apiVersion = VK_MAKE_VERSION(1, 0, 0) + }; + + unsigned i, nRequired; +#if 0 + if (!SDL_Vulkan_GetInstanceExtensions(win, &nRequired, NULL)) { + ERRFQ("Could not get number of instance extensions\n"); + } +#else + nRequired = 0; +#endif + static const char *const additional[] = { + VK_KHR_SURFACE_EXTENSION_NAME, + VK_KHR_XLIB_SURFACE_EXTENSION_NAME, + VK_EXT_DEBUG_REPORT_EXTENSION_NAME + }; + const unsigned nAdditional = sizeof(additional)/sizeof(additional[0]); + const uint32_t nExtensions = nRequired + nAdditional; + const char **extensions = malloc(sizeof(const char*)*nExtensions); +#if 0 + if (!SDL_Vulkan_GetInstanceExtensions(win, &nRequired, extensions)) { + /* OS will handle memory freeing */ + ERRQ(SDL_GetError()); + } +#endif + for (i = 0; i < nAdditional; ++i) { + extensions[nRequired + i] = additional[i]; + } + + /* Just printing verbosely */ + for (i = 0; i < nExtensions; ++i) { + printf("Using instance extension:\t%s\n", extensions[i]); + } + +#ifdef VULKAN_VALIDATION + static const char *const layers[] = { + "VK_LAYER_LUNARG_standard_validation" + }; + const uint32_t nLayers = sizeof(layers)/sizeof(layers[0]); +#endif + VkInstanceCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO, + .pApplicationInfo = &appInfo, + .enabledExtensionCount = nExtensions, + .ppEnabledExtensionNames = extensions, +#ifdef VULKAN_VALIDATION + .enabledLayerCount = nLayers, + .ppEnabledLayerNames = layers +#endif + }; + VkResult result; + if ((result = vkCreateInstance(&createInfo, NULL, &instance))) { + /* OS will handle memory freeing */ + ERRFQ("Could not create Vulkan instance: %d\n", result); + } + free(extensions); +} + +#ifdef VULKAN_VALIDATION +static VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback( + VkDebugReportFlagsEXT flags, + VkDebugReportObjectTypeEXT objType, + uint64_t obj, + size_t location, + int32_t code, + const char *layerPrefix, + const char *msg, + void *userData + ) +{ + fprintf(stderr, "\nValidation layer: %s\n\n", msg); + return VK_FALSE; +} + +VkResult createDebugReportCallback( + VkInstance instance, + const VkDebugReportCallbackCreateInfoEXT *pCreateInfo, + const VkAllocationCallbacks *pAllocator, + VkDebugReportCallbackEXT *pCallback + ) +{ + printf("Creating debug reporter\n"); + PFN_vkCreateDebugReportCallbackEXT func = (void*)vkGetInstanceProcAddr(instance, + "vkCreateDebugReportCallbackEXT"); + if (func) { + return func(instance, pCreateInfo, pAllocator, pCallback); + } else { + return VK_ERROR_EXTENSION_NOT_PRESENT; + } +} + +void destroyDebugReportCallback(VkInstance instance, VkDebugReportCallbackEXT callback, + const VkAllocationCallbacks *pAllocator) +{ + PFN_vkDestroyDebugReportCallbackEXT func = (void*)vkGetInstanceProcAddr(instance, + "vkDestroyDebugReportCallbackEXT"); + if (func) { + func(instance, callback, pAllocator); + } +} +static void createDebugReporter() +{ + VkDebugReportCallbackCreateInfoEXT createInfo = { + .sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT, + .flags = VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT, + .pfnCallback = debugCallback + }; + if (createDebugReportCallback(instance, &createInfo, NULL, &callback)) { + ERRQ("Could not create debug reporter"); + } +} +#endif + +static void selectPhysicalDevice(const char *hint) +{ + uint32_t nDevices; + vkEnumeratePhysicalDevices(instance, &nDevices, NULL); + if (!nDevices) { + ERRQ("No physical devices found"); + } + VkPhysicalDevice *devices = malloc(nDevices*sizeof(*devices)); + vkEnumeratePhysicalDevices(instance, &nDevices, devices); + + /* Just printing verbosely */ + for (uint32_t i = 0; i < nDevices; ++i) { + vkGetPhysicalDeviceProperties(devices[i], &deviceProperties); + printf("Found physical device:\t`%s`\n", deviceProperties.deviceName); + } + + /* FIXME: Blindly choosing the first device */ + physicalDevice = devices[0]; + + uint32_t nQueueFamilies = 0; + vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &nQueueFamilies, NULL); + VkQueueFamilyProperties *queueProperties = malloc(nQueueFamilies*sizeof(*queueProperties)); + vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &nQueueFamilies, queueProperties); + + for (uint32_t i = 0; i < nQueueFamilies; ++i) { + printf("Queue Family %d queueCount:\t%d\n", i, queueProperties[i].queueCount); + } + + for (graphicsIndex = 0; graphicsIndex < nQueueFamilies; ++graphicsIndex) { + if (queueProperties[graphicsIndex].queueFlags & VK_QUEUE_GRAPHICS_BIT) { + VkBool32 canSurface; + vkGetPhysicalDeviceSurfaceSupportKHR(physicalDevice, graphicsIndex, surface, &canSurface); + if (canSurface) break; + } + } + if (graphicsIndex >= nQueueFamilies) { + /* Some devices may have separate graphics and present queue families, or none at all. + * We only support graphics and present on the same queue family. + */ + ERRQ("No queue families capable of graphics and presentation"); + } + + /* Look for a queue family with transfer capabilities but no graphics or compute. + * Hardcoded literals are for conciseness and come from the `VkQueueFlagBits` definitions. + */ + const VkQueueFlagBits want = 0x4; + for (transferIndex = 0; transferIndex < nQueueFamilies; ++transferIndex) { + if ((queueProperties[transferIndex].queueFlags & 0x7) == want) { + goto found; + } + } + /* Look for a queue family with transfer capabilities that isn't the same as before. + * Graphics and compute queue families implicitly support transfer. + */ + for (transferIndex = 0; transferIndex < nQueueFamilies; ++transferIndex) { + if (queueProperties[transferIndex].queueFlags & 0x3) { + if (transferIndex != graphicsIndex) { + goto found; + } + } + } + //ERRQ("FIXME: Fallback transfer queue to graphics family"); + transferIndex = graphicsIndex; +found: + printf("Graphics Queue Family Index:\t%d\nTransfer Queue Family Index:\t%d\n", graphicsIndex, transferIndex); + + vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memoryProperties); + + VkBool32 canSwapchain = 0; + uint32_t nExtensions; + vkEnumerateDeviceExtensionProperties(physicalDevice, NULL, &nExtensions, NULL); + VkExtensionProperties *availableExtensions = malloc(nExtensions*sizeof(*availableExtensions)); + vkEnumerateDeviceExtensionProperties(physicalDevice, NULL, &nExtensions, availableExtensions); + + for (uint32_t i = 0; i < nExtensions; ++i) { + if (!strcmp(availableExtensions[i].extensionName, VK_KHR_SWAPCHAIN_EXTENSION_NAME)) { + canSwapchain = 1; + break; + } + } + if (!canSwapchain) { + ERRQ("Graphics device not swapchain capable"); + } + free(availableExtensions); + free(queueProperties); + free(devices); +} + +static void createLogicalDevice() +{ + VkPhysicalDeviceFeatures features; + vkGetPhysicalDeviceFeatures(physicalDevice, &features); + const float queuePriorities[] = { 1.0f, 0.125f }; + const VkDeviceQueueCreateInfo queueCreateInfos[] = { + { + .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, + .queueFamilyIndex = graphicsIndex, + .queueCount = 1, + .pQueuePriorities = &queuePriorities[0] + }, { + .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, + .queueFamilyIndex = transferIndex, + .queueCount = 1, + .pQueuePriorities = &queuePriorities[1] + } + }; + + const char *const swapchainName = VK_KHR_SWAPCHAIN_EXTENSION_NAME; + const VkDeviceCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO, + .pQueueCreateInfos = queueCreateInfos, + .queueCreateInfoCount = 2, + .pEnabledFeatures = &features, + .enabledExtensionCount = 1, + .ppEnabledExtensionNames = &swapchainName + }; + + VkResult result; + if ((result = vkCreateDevice(physicalDevice, &createInfo, NULL, &device))) { + ERRFQ("Could not create logical device: %d\n", result); + } + + const VmaAllocatorCreateInfo allocatorInfo = { + //.flags = VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT, + .physicalDevice = physicalDevice, + .device = device + }; + if ((result = vmaCreateAllocator(&allocatorInfo, &vmaAllocator))) { + ERRFQ("Could not create Vulkan Memory Allocator: %d\n", result); + } +} + +static void destroyLogicalDevice() +{ + vmaDestroyAllocator(vmaAllocator); + vkDestroyDevice(device, NULL); +} + +static void createCommandPools() +{ + VkCommandPoolCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, + .queueFamilyIndex = graphicsIndex + }; + VkResult result; + if ((result = vkCreateCommandPool(device, &createInfo, NULL, &commandPool))) { + ERRFQ("Could not create command pool:\t%d\n", result); + } + createInfo.queueFamilyIndex = transferIndex; + if ((result = vkCreateCommandPool(device, &createInfo, NULL, &transferPool))) { + ERRFQ("Could not create transfer pool:\t%d\n", result); + } +} + +static void destroyCommandPools() +{ + vkDestroyCommandPool(device, transferPool, NULL); + vkDestroyCommandPool(device, commandPool, NULL); +} + +static void allocateCommandBuffers() +{ + const VkCommandBufferAllocateInfo allocInfo = { + .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, + .commandPool = commandPool, + .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY, + .commandBufferCount = nImages + }; + commandBuffers = realloc(commandBuffers, nImages*sizeof(VkCommandBuffer)); + VkResult result; + if ((result = vkAllocateCommandBuffers(device, &allocInfo, commandBuffers))) { + ERRFQ("Could not create command buffers: %d\n", result); + } +} + +static void freeCommandBuffers() +{ + if (commandBuffers) { + vkFreeCommandBuffers(device, commandPool, nImages, commandBuffers); + } +} + +void getFrame(PuglView *view, int *width, int *height) +{ + const PuglRect rect = puglGetFrame(view); + *width = rect.width; + *height = rect.height; + //printf("Pugl frame:\t%d, %d\n", *width, *height); +} + +static void createSwapchain() +{ + VkSurfaceCapabilitiesKHR capabilities; + VkSurfaceFormatKHR *formats; + VkPresentModeKHR *presentModes; + + vkGetPhysicalDeviceSurfaceCapabilitiesKHR(physicalDevice, surface, &capabilities); + uint32_t nFormats; + vkGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, surface, &nFormats, NULL); + if (!nFormats) { + ERRQ("No surface formats available"); + } + formats = malloc(nFormats*sizeof(*formats)); + vkGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, surface, &nFormats, formats); + + uint32_t nPresentModes; + vkGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, surface, &nPresentModes, NULL); + if (!nPresentModes) { + ERRQ("No surface present modes available"); + } + presentModes = malloc(nPresentModes*sizeof(*presentModes)); + vkGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, surface, &nPresentModes, presentModes); + + for (uint32_t i = 0; i < nFormats; ++i) { + VkSurfaceFormatKHR want = { + VK_FORMAT_B8G8R8A8_SRGB, // BGRA sRGB + VK_COLOR_SPACE_SRGB_NONLINEAR_KHR + }; + if (formats[i].format == VK_FORMAT_UNDEFINED) { + surfaceFormat = want; + //SDL_Log("Obtained wanted surface format on first try\n"); + break; + } + if (formats[i].format == want.format && formats[i].colorSpace == want.colorSpace) { + surfaceFormat = want; + //SDL_Log("Obtained wanted format on try %d/%d\n", i+1, nFormats); + break; + } + } + + /* FIXME: Just assuming this is available */ + //VkPresentModeKHR presentMode = VK_PRESENT_MODE_FIFO_KHR; + //VkPresentModeKHR presentMode = VK_PRESENT_MODE_FIFO_RELAXED_KHR; + VkPresentModeKHR presentMode = VK_PRESENT_MODE_IMMEDIATE_KHR; + //VkPresentModeKHR presentMode = VK_PRESENT_MODE_MAILBOX_KHR; + + int width, height; + //SDL_Vulkan_GetDrawableSize(win, &width, &height); + getFrame(view, &width, &height); + width = CLAMP(width, capabilities.minImageExtent.width, capabilities.maxImageExtent.width); + height = CLAMP(height, capabilities.minImageExtent.height, capabilities.maxImageExtent.height); + swapchainExtent.width = width; + swapchainExtent.height = height; + //swapchainExtent = capabilities.currentExtent; + + //nImages = capabilities.minImageCount + 1; + nImages = capabilities.minImageCount; + //nImages = capabilities.maxImageCount; + if (capabilities.maxImageCount > 0 && nImages > capabilities.maxImageCount) { + /* Clamp to max image count if too many requested */ + nImages = capabilities.maxImageCount; + } + //printf("Swapchain Images:\t%d\n", nImages); + + const VkSwapchainCreateInfoKHR createInfo = { + .sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR, + .surface = surface, + .minImageCount = nImages, + .imageFormat = surfaceFormat.format, + .imageExtent = swapchainExtent, + .imageArrayLayers = 1, + .imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, + .imageSharingMode = VK_SHARING_MODE_EXCLUSIVE, // assuming same family + .preTransform = capabilities.currentTransform, + .compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR, + .presentMode = presentMode, + .clipped = VK_TRUE, + .oldSwapchain = oldRawSwapchain + }; + + VkResult result; + if ((result = vkCreateSwapchainKHR(device, &createInfo, NULL, &rawSwapchain))) { + ERRFQ("Could not create swapchain: %d\n", result); + } + if (oldRawSwapchain != VK_NULL_HANDLE) { + vkDestroySwapchainKHR(device, oldRawSwapchain, NULL); + oldRawSwapchain = VK_NULL_HANDLE; + } + free(presentModes); + free(formats); +} + +static void destroySwapchain() +{ + if (rawSwapchain != VK_NULL_HANDLE) { + vkDestroySwapchainKHR(device, rawSwapchain, NULL); + } + rawSwapchain = VK_NULL_HANDLE; +} + +/* Allocates and reallocates memory */ +static void createSwapchainImageViews() +{ + vkGetSwapchainImagesKHR(device, rawSwapchain, &nImages, NULL); + swapchainImages = malloc(nImages*sizeof(*swapchainImages)); + vkGetSwapchainImagesKHR(device, rawSwapchain, &nImages, swapchainImages); + swapchainImageViews = malloc(nImages*sizeof(*swapchainImageViews)); + + for (uint32_t i = 0; i < nImages; ++i) { + const VkImageViewCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, + .image = swapchainImages[i], + .viewType = VK_IMAGE_VIEW_TYPE_2D, + .format = surfaceFormat.format, + .components.r = VK_COMPONENT_SWIZZLE_IDENTITY, + .components.g = VK_COMPONENT_SWIZZLE_IDENTITY, + .components.b = VK_COMPONENT_SWIZZLE_IDENTITY, + .components.a = VK_COMPONENT_SWIZZLE_IDENTITY, + .subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, + .subresourceRange.baseMipLevel = 0, + .subresourceRange.levelCount = 1, + .subresourceRange.baseArrayLayer = 0, + .subresourceRange.layerCount = 1 + + }; + if (vkCreateImageView(device, &createInfo, NULL, &swapchainImageViews[i])) { + ERRQ("Could not create swapchain image views"); + } + } +} + +static void destroySwapchainImageViews() +{ + for (uint32_t i = 0; i < nImages; ++i) { + vkDestroyImageView(device, swapchainImageViews[i], NULL); + } + free(swapchainImageViews); + free(swapchainImages); + swapchainImageViews = NULL; + swapchainImages = NULL; +} + +static void createDepthImage() +{ + const VkImageCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, + .imageType = VK_IMAGE_TYPE_2D, + .format = depthFormat, + .extent.width = swapchainExtent.width, + .extent.height = swapchainExtent.height, + .extent.depth = 1, + .mipLevels = 1, + .arrayLayers = 1, + .samples = msaaSampleCount, + .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, + .usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, + .sharingMode = VK_SHARING_MODE_EXCLUSIVE, + }; + VmaAllocationCreateInfo allocInfo = { + .flags = VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT, + .usage = VMA_MEMORY_USAGE_GPU_ONLY + }; + VkResult result; + if ((result = vmaCreateImage(vmaAllocator, &createInfo, &allocInfo, &depthImage, &depthVma, NULL))) { + fprintf(stderr, "Could not create depth image: %d\n", result); + exit(1); + } + const VkImageViewCreateInfo viewInfo = { + .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, + .image = depthImage, + .format = depthFormat, + .components.r = VK_COMPONENT_SWIZZLE_R, + .components.g = VK_COMPONENT_SWIZZLE_G, + .components.b = VK_COMPONENT_SWIZZLE_B, + .components.a = VK_COMPONENT_SWIZZLE_A, + .subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT, + .subresourceRange.baseMipLevel = 0, + .subresourceRange.levelCount = 1, + .subresourceRange.baseArrayLayer = 0, + .subresourceRange.layerCount = 1, + .viewType = VK_IMAGE_VIEW_TYPE_2D, + }; + if ((result = vkCreateImageView(device, &viewInfo, NULL, &depthImageView))) { + ERRFQ("Could not create depth buffer image view: %d\n", result); + } +} + +static void destroyDepthImage() +{ + vkDestroyImageView(device, depthImageView, NULL); + vmaDestroyImage(vmaAllocator, depthImage, depthVma); + depthImageView = VK_NULL_HANDLE; + depthVma = VK_NULL_HANDLE; + depthImage = VK_NULL_HANDLE; +} + +static VkImage msaaImage; +static VkImageView msaaImageView; +static VmaAllocation msaaVma; + +static void createMultisampleImage() +{ + const VkImageCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, + .imageType = VK_IMAGE_TYPE_2D, + .format = surfaceFormat.format, + .extent.width = swapchainExtent.width, + .extent.height = swapchainExtent.height, + .extent.depth = 1, + .mipLevels = 1, + .arrayLayers = 1, + .samples = msaaSampleCount, + .usage = VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT | + VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, + .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, + .sharingMode = VK_SHARING_MODE_EXCLUSIVE, + .tiling = VK_IMAGE_TILING_OPTIMAL + }; + const VmaAllocationCreateInfo allocInfo = { + .flags = VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT, + .usage = VMA_MEMORY_USAGE_GPU_ONLY + }; + VkResult result; + if ((result = vmaCreateImage(vmaAllocator, &createInfo, &allocInfo, &msaaImage, &msaaVma, NULL))) { + ERRFQ("Could not create multisample image: %d\n", result); + } + const VkImageViewCreateInfo viewInfo = { + .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, + .image = msaaImage, + .format = VK_FORMAT_B8G8R8A8_SRGB, + .components.r = VK_COMPONENT_SWIZZLE_R, + .components.g = VK_COMPONENT_SWIZZLE_G, + .components.b = VK_COMPONENT_SWIZZLE_B, + .components.a = VK_COMPONENT_SWIZZLE_A, + .subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, + .subresourceRange.baseMipLevel = 0, + .subresourceRange.levelCount = 1, + .subresourceRange.baseArrayLayer = 0, + .subresourceRange.layerCount = 1, + .viewType = VK_IMAGE_VIEW_TYPE_2D, + }; + if ((result = vkCreateImageView(device, &viewInfo, NULL, &msaaImageView))) { + ERRFQ("Could not create multisample image view: %d\n", result); + } +} + +static void destroyMultisampleImage() +{ + vkDestroyImageView(device, msaaImageView, NULL); + vmaDestroyImage(vmaAllocator, msaaImage, msaaVma); + msaaImageView = VK_NULL_HANDLE; + msaaVma = VK_NULL_HANDLE; + msaaImage = VK_NULL_HANDLE; +} + +static VkRenderPass renderPass; + +static void createRenderPass() +{ + VkAttachmentDescription attachments[] = {{ + /* Color image */ + .format = surfaceFormat.format, + .samples = msaaSampleCount, + .loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR, + .storeOp = msaaEnabled ? + VK_ATTACHMENT_STORE_OP_DONT_CARE : + VK_ATTACHMENT_STORE_OP_STORE, + .stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE, + .stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE, + .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, + .finalLayout = msaaEnabled ? + VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL : + VK_IMAGE_LAYOUT_PRESENT_SRC_KHR + }, { + /* Resolve image */ + .format = surfaceFormat.format, + .samples = VK_SAMPLE_COUNT_1_BIT, + .loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE, + .storeOp = VK_ATTACHMENT_STORE_OP_STORE, + .stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE, + .stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE, + .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, + .finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR + }, { + /* Depth stencil image */ + .format = depthFormat, + .samples = msaaSampleCount, + .loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR, + .storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE, + .stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE, + .stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE, + .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, + .finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL + }}; + + if (!msaaEnabled) { + attachments[1] = attachments[2]; + } + + const VkAttachmentReference colorAttachmentRef = { + .attachment = 0, + .layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL + }; + const VkAttachmentReference resolveAttachmentRef = { + .attachment = 1, + .layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL + }; + const VkAttachmentReference depthStencilAttachmentRef = { + .attachment = msaaEnabled ? 2 : 1, + .layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL + }; + + const VkSubpassDescription subpass = { + .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS, + .colorAttachmentCount = 1, + .pColorAttachments = &colorAttachmentRef, + .pResolveAttachments = msaaEnabled ? &resolveAttachmentRef : NULL, + .pDepthStencilAttachment = &depthStencilAttachmentRef + }; + + const VkRenderPassCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, + .pAttachments = attachments, + .subpassCount = 1, + .attachmentCount = msaaEnabled ? 3 : 2, + .pSubpasses = &subpass + }; + + VkResult result; + if ((result = vkCreateRenderPass(device, &createInfo, NULL, &renderPass))) { + ERRFQ("Could not create render pass: %d\n", result); + } +} + +static void destroyRenderPass() +{ + vkDestroyRenderPass(device, renderPass, NULL); + renderPass = VK_NULL_HANDLE; +} + +static VkFramebuffer *swapchainFramebuffers; + +static void createSwapchainFramebuffers() +{ + swapchainFramebuffers = malloc(nImages*sizeof(*swapchainFramebuffers)); + for (uint32_t i = 0; i < nImages; ++i) { + const VkImageView attachments[] = { + msaaImageView, + swapchainImageViews[i], + depthImageView + }; + const VkFramebufferCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, + .renderPass = renderPass, + .attachmentCount = msaaEnabled ? 3 : 2, + .pAttachments = msaaEnabled ? attachments : &attachments[1], + .width = swapchainExtent.width, + .height = swapchainExtent.height, + .layers = 1 + }; + VkResult result; + if ((result = vkCreateFramebuffer(device, &createInfo, NULL, &swapchainFramebuffers[i]))) { + ERRFQ("Could not create swapchainFramebuffers: %d\n", result); + } + } +} + +static void destroySwapchainFramebuffers() +{ + for (uint32_t i = 0; i < nImages; ++i) { + vkDestroyFramebuffer(device, swapchainFramebuffers[i], NULL); + } + free(swapchainFramebuffers); + swapchainFramebuffers = NULL; +} + +void initVulkan() +{ + createInstance(); +#ifdef VULKAN_VALIDATION + createDebugReporter(); +#endif +#if 0 + if (!SDL_Vulkan_CreateSurface(win, instance, &surface)) { + ERRQ(SDL_GetError()); + } +#else +#include "pugl/detail/x11.h" + // HACK: Vulkan needs access to this + const VkXlibSurfaceCreateInfoKHR createInfo = { + .sType = VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR, + .dpy = ((struct PuglWorldImpl*)world)->impl->display, + .window = puglGetNativeWindow(view) + }; + VkResult result; + if ((result = vkCreateXlibSurfaceKHR(instance, &createInfo, NULL, &surface))) { + ERRFQ("Could not create Xlib surface: %d\n", result); + } +#endif + selectPhysicalDevice(NULL); + createLogicalDevice(); + vkGetDeviceQueue(device, transferIndex, 0, &transferQueue); + vkGetDeviceQueue(device, graphicsIndex, 0, &graphicsQueue); + createCommandPools(); +} + +void deinitVulkan() +{ + destroyCommandPools(); + destroyLogicalDevice(); + vkDestroySurfaceKHR(instance, surface, NULL); +#ifdef VULKAN_VALIDATION + destroyDebugReportCallback(instance, callback, NULL); +#endif +} + +void beginVulkan() +{ + createSwapchain(); + createSwapchainImageViews(); + allocateCommandBuffers(); + createDepthImage(); + if (msaaEnabled) createMultisampleImage(); + createRenderPass(); + createSwapchainFramebuffers(); +} + +void endVulkan() +{ + destroySwapchainFramebuffers(); + destroyRenderPass(); + if (msaaEnabled) destroyMultisampleImage(); + destroyDepthImage(); + destroySwapchainImageViews(); + destroySwapchain(); +} + +static struct Uniform uniformData; +static VkBuffer uniformBuffer; +//static VkDeviceMemory uniformMemory; +static VmaAllocation uniformVma; +VkDeviceSize uniformAlignment; + +static void createUniformBuffer() +{ + const VkDeviceSize alignMask = deviceProperties.limits.minUniformBufferOffsetAlignment - 1; + uniformAlignment = (sizeof(uniformData) + alignMask) & ~alignMask; + printf("Uniform Alignment:\t%lu\n", uniformAlignment); + const VkBufferCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, + .usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, + .size = nImages*uniformAlignment, + .sharingMode = VK_SHARING_MODE_EXCLUSIVE + }; + const VmaAllocationCreateInfo allocInfo = { + //.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT, + .usage = VMA_MEMORY_USAGE_CPU_TO_GPU + }; + VkResult result; + if ((result = vmaCreateBuffer(vmaAllocator, &createInfo, &allocInfo, &uniformBuffer, &uniformVma, NULL))) { + ERRFQ("Could not create uniform buffer: %d\n", result); + } +#if 0 + VkResult result; + if ((result = vkCreateBuffer(device, &createInfo, NULL, &uniformBuffer))) { + ERRFQ("Could not create uniform buffer: %d\n", result); + } + + /* TODO: Figure best memory properties for uniform data */ + VkMemoryRequirements memReq; + vkGetBufferMemoryRequirements(device, uniformBuffer, &memReq); + const uint32_t props = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; + const uint32_t memType = getMemType(&memReq, props); + + const VkMemoryAllocateInfo allocInfo = { + .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, + .allocationSize = memReq.size, + .memoryTypeIndex = memType + }; + + if ((result = vkAllocateMemory(device, &allocInfo, NULL, &uniformMemory))) { + ERRFQ("Could not allocate uniform buffer memory: %d\n", result); + } + + if ((result = vkBindBufferMemory(device, uniformBuffer, uniformMemory, 0))) { + ERRFQ("Could not bind uniform buffer memory: %d\n", result); + } +#endif +} + +static void destroyUniformBuffer() +{ + //vkFreeMemory(device, uniformMemory, NULL); + //vkDestroyBuffer(device, uniformBuffer, NULL); + vmaDestroyBuffer(vmaAllocator, uniformBuffer, uniformVma); +} + +static void populateUniformBuffer() +{ + load_identity(uniformData.model); + load_identity(uniformData.view); + load_perspective(uniformData.proj, DEGREES(45), 16.0f/9.0f, 0.1f, 10.0f); + /* Could map and copy into the GPU here but we could also do that per-frame. */ +} + +static VkDescriptorPool descriptorPool; + +static void createDescriptorPool() +{ + const VkDescriptorPoolSize poolSize = { + .type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, + .descriptorCount = 1 + }; + const VkDescriptorPoolCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO, + .poolSizeCount = 1, + .pPoolSizes = &poolSize, + .maxSets = 1 + }; + VkResult result; + if ((result = vkCreateDescriptorPool(device, &createInfo, NULL, &descriptorPool))) { + ERRFQ("Could not create descriptor pool: %d\n", result); + } +} + +static void destroyDescriptorPool() +{ + vkDestroyDescriptorPool(device, descriptorPool, NULL); +} + +static VkDescriptorSetLayout descriptorSetLayout; + +static void createDescriptorSetLayout() +{ + const VkDescriptorSetLayoutBinding layoutBinding = { + .binding = 0, + .descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, + .descriptorCount = 1, + .stageFlags = VK_SHADER_STAGE_VERTEX_BIT + }; + const VkDescriptorSetLayoutCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, + .bindingCount = 1, + .pBindings = &layoutBinding + }; + VkResult result; + if ((result = vkCreateDescriptorSetLayout(device, &createInfo, NULL, &descriptorSetLayout))) { + ERRFQ("Could not create descriptor set layout: %d\n", result); + } +} + +static void destroyDescriptorSetLayout() +{ + vkDestroyDescriptorSetLayout(device, descriptorSetLayout, NULL); +} + +static VkDescriptorSet descriptorSet; + +static void allocateDescriptorSets() +{ + const VkDescriptorSetAllocateInfo allocInfo = { + .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, + .descriptorPool = descriptorPool, + .descriptorSetCount = 1, + .pSetLayouts = &descriptorSetLayout + }; + VkResult result; + if ((result = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet))) { + ERRFQ("Could not allocate descriptor set: %d\n", result); + } +} + +static void updateDescriptorSets() +{ + const VkDescriptorBufferInfo bufferInfo = { + .buffer = uniformBuffer, + .offset = 0, + .range = sizeof(uniformData) + }; + + const VkWriteDescriptorSet descriptorWrite = { + .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, + .dstSet = descriptorSet, + .dstBinding = 0, + .dstArrayElement = 0, + .descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, + .descriptorCount = 1, + .pBufferInfo = &bufferInfo + }; + + VkResult result; + vkUpdateDescriptorSets(device, 1, &descriptorWrite, 0, NULL); +} + +static VkPipelineLayout pipelineLayout; + +static void createPipelineLayout() +{ + const VkPipelineLayoutCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, + .setLayoutCount = 1, + .pSetLayouts = &descriptorSetLayout, + }; + VkResult result; + if ((result = vkCreatePipelineLayout(device, &createInfo, NULL, &pipelineLayout))) { + ERRFQ("Could not create pipeline layout: %d\n", result); + } +} + +static void destroyPipelineLayout() +{ + vkDestroyPipelineLayout(device, pipelineLayout, NULL); +} + +static VkShaderModule vShaderModule; +static VkShaderModule fShaderModule; + +static void createShaderModules() +{ + size_t vertLen, fragLen; + uint8_t *vertCode = read_file("vert.spv", &vertLen); + if (!vertCode) { + ERRQ("Could not read vert.spv"); + } + uint8_t *fragCode = read_file("frag.spv", &fragLen); + if (!fragCode) { + ERRQ("Could not read frag.spv"); + } + + VkShaderModuleCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO, + .codeSize = vertLen, + .pCode = (void*)vertCode + }; + + VkResult result; + if ((result = vkCreateShaderModule(device, &createInfo, NULL, &vShaderModule))) { + ERRFQ("Could not create vertex shader module: %d\n", result); + } + + createInfo.codeSize = fragLen; + createInfo.pCode = (void*)fragCode; + if ((result = vkCreateShaderModule(device, &createInfo, NULL, &fShaderModule))) { + ERRFQ("Could not create fragment shader module: %d\n", result); + } + + free(vertCode); + free(fragCode); +} + +static void destroyShaderModules() +{ + vkDestroyShaderModule(device, vShaderModule, NULL); + vkDestroyShaderModule(device, fShaderModule, NULL); +} + +// TODO: These should be dynamically allocated as arrays maybe +static VkSemaphore imageAvailableSemaphore; +static VkSemaphore renderFinishedSemaphore; + +static VkFence *imageFences; + +static void createSyncObjects() +{ + VkResult result; + const VkSemaphoreCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO + }; + if ((result = vkCreateSemaphore(device, &createInfo, NULL, &imageAvailableSemaphore))) { + ERRFQ("Could not create image available semaphore: %d\n", result); + } + if ((result = vkCreateSemaphore(device, &createInfo, NULL, &renderFinishedSemaphore))) { + ERRFQ("Could not create render finished semaphore: %d\n", result); + } + const VkFenceCreateInfo fenceInfo = { + .sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, + .flags = VK_FENCE_CREATE_SIGNALED_BIT + }; + imageFences = malloc(nImages*sizeof(VkFence*)); + for (uint32_t i = 0; i < nImages; ++i) { + if ((result = vkCreateFence(device, &fenceInfo, NULL, &imageFences[i]))) { + ERRFQ("Could not create render finished fence: %d\n", result); + } + } +} + +static void destroySyncObjects() +{ + vkDestroySemaphore(device, imageAvailableSemaphore, NULL); + vkDestroySemaphore(device, renderFinishedSemaphore, NULL); + if (imageFences) { + for (uint32_t i = 0; i < nImages; ++i) { + vkDestroyFence(device, imageFences[i], NULL); + } + free(imageFences); + imageFences = NULL; + } +} + +static VkBuffer meshBuffer; +static VkDeviceMemory meshMemory; + +struct VertexLayout { + float position[3]; + float normal[3]; + float uv[2]; +}; + +static uint32_t vertexCount; +static uint32_t indexCount; + +VkDeviceSize vertexSize; +VkDeviceSize indexSize; + +VkDeviceSize indexOffset; +VkIndexType indexType; + +static void createVertexBuffer() +{ + size_t rawsize; + void *rawData = read_file("export.jch", &rawsize); + if (!rawData) { + ERRFQ("Cannot open model file\n"); + } + const struct { + uint32_t signature; + uint32_t numVerts; + uint32_t numPolys; + } *header = rawData; + if (header->signature != 0x0048434a) { + ERRFQ("File is not model file\n"); + } + printf("Verts:\t%d\nPolys:\t%d\n", header->numVerts, header->numPolys); + vertexCount = header->numVerts; + indexCount = 3*header->numPolys; + vertexSize = vertexCount*sizeof(struct VertexLayout); + indexSize = vertexCount > 65536 ? 4*indexCount : 2*indexCount; + indexType = vertexCount > 65536 ? VK_INDEX_TYPE_UINT32 : VK_INDEX_TYPE_UINT16; + if ((vertexSize + indexSize + sizeof(*header)) != rawsize) { + ERRFQ("Model file is corrupt\n"); + } + indexOffset = vertexSize; + + /* Make a simple staging buffer large enough to hold both vertex and index data */ + const VkDeviceSize stagingSize = vertexSize + indexSize; + + VkBuffer stagingBuffer; + VkDeviceMemory stagingMemory; + + VkBufferCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, + .usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | + VK_BUFFER_USAGE_INDEX_BUFFER_BIT | + VK_BUFFER_USAGE_TRANSFER_DST_BIT, + .size = vertexSize + indexSize, + .sharingMode = VK_SHARING_MODE_EXCLUSIVE // FIXME: Transfer ownership to graphics queue family? + }; + + VkResult result; + if ((result = vkCreateBuffer(device, &createInfo, NULL, &meshBuffer))) { + ERRFQ("Could not create mesh buffer: %d\n", result); + } + + createInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; + createInfo.size = stagingSize; + + if ((result = vkCreateBuffer(device, &createInfo, NULL, &stagingBuffer))) { + ERRFQ("Could not create staging buffer: %d\n", result); + } + + const uint32_t hostProps = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; + const uint32_t deviceProps = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + + VkMemoryRequirements meshMemReq; + vkGetBufferMemoryRequirements(device, meshBuffer, &meshMemReq); + uint32_t memType = getMemType(&meshMemReq, deviceProps); + + VkMemoryAllocateInfo allocInfo = { + .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, + .allocationSize = meshMemReq.size, + .memoryTypeIndex = memType + }; + + if ((result = vkAllocateMemory(device, &allocInfo, NULL, &meshMemory))) { + ERRFQ("Could not allocate mesh buffer memory: %d\n", result); + } + + VkMemoryRequirements stagingMemReq; + vkGetBufferMemoryRequirements(device, stagingBuffer, &stagingMemReq); + memType = getMemType(&stagingMemReq, hostProps); + allocInfo.allocationSize = stagingMemReq.size; + allocInfo.memoryTypeIndex = memType; + + if ((result = vkAllocateMemory(device, &allocInfo, NULL, &stagingMemory))) { + ERRFQ("Could not allocate staging buffer memory: %d\n", result); + } + + if ((result = vkBindBufferMemory(device, meshBuffer, meshMemory, 0))) { + ERRFQ("Could not bind mesh buffer memory: %d\n", result); + } + + if ((result = vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0))) { + ERRFQ("Could not bind staging buffer memory: %d\n", result); + } + + void *data; + vkMapMemory(device, stagingMemory, 0, stagingMemReq.size, 0, &data); + memcpy(data, rawData + 12, vertexSize + indexSize); + vkUnmapMemory(device, stagingMemory); + + free(rawData); + + const VkCommandBufferAllocateInfo copyAllocInfo = { + .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, + .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY, + .commandPool = transferPool, + .commandBufferCount = 1 + }; + VkCommandBuffer copyBuffer; + if ((result = vkAllocateCommandBuffers(device, ©AllocInfo, ©Buffer))) { + ERRFQ("Could not allocate copy command buffer %d\n", result); + } + + const VkCommandBufferBeginInfo beginInfo = { + .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, + .flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT + }; + if ((result = vkBeginCommandBuffer(copyBuffer, &beginInfo))) { + ERRFQ("Could not begin recording copy command buffer %d\n", result); + } + const VkBufferCopy copyRegions[] = { + { + .srcOffset = 0, + .dstOffset = 0, + .size = vertexSize + }, { + .srcOffset = vertexSize, + .dstOffset = vertexSize, + .size = indexSize + } + }; + vkCmdCopyBuffer(copyBuffer, stagingBuffer, meshBuffer, 2, copyRegions); + vkEndCommandBuffer(copyBuffer); + + const VkSubmitInfo submitInfo = { + .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO, + .commandBufferCount = 1, + .pCommandBuffers = ©Buffer + }; + vkQueueSubmit(transferQueue, 1, &submitInfo, VK_NULL_HANDLE); + vkQueueWaitIdle(transferQueue); + + /* Data is guaranteed to be fully written here. + * If we didn't choose to synchronize here to free the command buffer + * right away, then we would need to wait on a Fence or Semaphore + * before touching it later on. + */ + vkFreeCommandBuffers(device, transferPool, 1, ©Buffer); + vkFreeMemory(device, stagingMemory, NULL); + vkDestroyBuffer(device, stagingBuffer, NULL); +} + +static void destroyVertexBuffer() +{ + vkDestroyBuffer(device, meshBuffer, NULL); + vkFreeMemory(device, meshMemory, NULL); +} + +static VkPipeline graphicsPipeline; + +static void createGraphicsPipeline() +{ + const VkPipelineShaderStageCreateInfo shaderStages[] = {{ + .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, + .stage = VK_SHADER_STAGE_VERTEX_BIT, + .module = vShaderModule, + .pName = "main" + }, { + .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, + .stage = VK_SHADER_STAGE_FRAGMENT_BIT, + .module = fShaderModule, + .pName = "main" + }}; + + const VkVertexInputBindingDescription bindingDescription = { + .binding = 0, + .stride = sizeof(struct VertexLayout), + .inputRate = VK_VERTEX_INPUT_RATE_VERTEX + }; + + const VkVertexInputAttributeDescription attribDescriptions[3] = { + { + .binding = 0, + .location = 0, + .format = VK_FORMAT_R32G32B32_SFLOAT, + .offset = offsetof(struct VertexLayout, position) + }, { + .binding = 0, + .location = 1, + .format = VK_FORMAT_R32G32B32_SFLOAT, + .offset = offsetof(struct VertexLayout, normal) + }, { + .binding = 0, + .location = 2, + .format = VK_FORMAT_R32G32_SFLOAT, + .offset = offsetof(struct VertexLayout, uv) + }}; + + const VkPipelineVertexInputStateCreateInfo vertexInputState = { + .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, + .vertexBindingDescriptionCount = 1, + .pVertexBindingDescriptions = &bindingDescription, + .vertexAttributeDescriptionCount = 3, + .pVertexAttributeDescriptions = attribDescriptions + }; + + const VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = { + .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, + .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, + .primitiveRestartEnable = VK_FALSE + }; + + const VkViewport viewport = { + .x = 0.0f, + .y = 0.0f, + .width = swapchainExtent.width, + .height = swapchainExtent.height, + .minDepth = 0.0f, + .maxDepth = 1.0f + }; + + const VkRect2D scissor = { + .offset = { 0, 0 }, + .extent = swapchainExtent + }; + + const VkPipelineViewportStateCreateInfo viewportState = { + .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, + .viewportCount = 1, + .pViewports = &viewport, + .scissorCount = 1, + .pScissors = &scissor + }; + + const VkPipelineRasterizationStateCreateInfo rasterizationState = { + .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, + .depthClampEnable = VK_FALSE, + .rasterizerDiscardEnable = VK_FALSE, + .polygonMode = VK_POLYGON_MODE_FILL, + .lineWidth = 1.0f, + .cullMode = VK_CULL_MODE_BACK_BIT, + .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE, + .depthBiasEnable = VK_FALSE + }; + + const VkPipelineMultisampleStateCreateInfo multisampleState = { + .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, + .rasterizationSamples = msaaSampleCount, + .sampleShadingEnable = VK_FALSE + }; + + VkPipelineDepthStencilStateCreateInfo depthStencilState = { + .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO, + .depthTestEnable = VK_TRUE, + .depthWriteEnable = VK_TRUE, + .depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL, + .front = { + .failOp = VK_STENCIL_OP_KEEP, + .passOp = VK_STENCIL_OP_KEEP, + .compareOp = VK_COMPARE_OP_ALWAYS, + .compareMask = 0, + .reference = 0, + .depthFailOp = VK_STENCIL_OP_KEEP, + .writeMask = 0 + } + }; + depthStencilState.back = depthStencilState.front; + + const VkPipelineColorBlendAttachmentState colorBlendAttachment = { + .colorWriteMask = 0xf, + .blendEnable = VK_FALSE, + }; + + const VkPipelineColorBlendStateCreateInfo colorBlendState = { + .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, + .logicOpEnable = VK_FALSE, + .logicOp = VK_LOGIC_OP_COPY, + .attachmentCount = 1, + .pAttachments = &colorBlendAttachment, + .blendConstants[0] = 0.0f, + .blendConstants[1] = 0.0f, + .blendConstants[2] = 0.0f, + .blendConstants[3] = 0.0f + }; + + const VkGraphicsPipelineCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, + .stageCount = 2, + .pStages = shaderStages, + .pVertexInputState = &vertexInputState, + .pInputAssemblyState = &inputAssemblyState, + .pTessellationState = NULL, + .pViewportState = &viewportState, + .pRasterizationState = &rasterizationState, + .pMultisampleState = &multisampleState, + .pDepthStencilState = &depthStencilState, + .pColorBlendState = &colorBlendState, + .pDynamicState = NULL, + .layout = pipelineLayout, + .renderPass = renderPass, + .subpass = 0, + .basePipelineHandle = VK_NULL_HANDLE, + .basePipelineIndex = 0 + }; + + VkResult result; + if ((result = vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &createInfo, NULL, &graphicsPipeline))) { + ERRFQ("Could not create graphics pipeline: %d\n", result); + } +} + +static void destroyGraphicsPipeline() +{ + vkDestroyPipeline(device, graphicsPipeline, NULL); + graphicsPipeline = VK_NULL_HANDLE; +} + +void setupScene() +{ + createUniformBuffer(); + createDescriptorPool(); + createDescriptorSetLayout(); + allocateDescriptorSets(); + updateDescriptorSets(); + createPipelineLayout(); + createShaderModules(); + createSyncObjects(); + createVertexBuffer(); + createGraphicsPipeline(); +} + +void teardownScene() +{ + destroyGraphicsPipeline(); + destroyVertexBuffer(); + destroySyncObjects(); + destroyShaderModules(); + destroyPipelineLayout(); + destroyDescriptorSetLayout(); + destroyDescriptorPool(); + destroyUniformBuffer(); +} + +void recordCommandBuffers() +{ + VkClearValue clearValues[3] = {{ + .color.float32[0] = 0.0f, + .color.float32[1] = 0.0f, + .color.float32[2] = 0.0f, + .color.float32[3] = 1.0f, + }, { + .color.float32[0] = 0.0f, + .color.float32[1] = 0.0f, + .color.float32[2] = 0.0f, + .color.float32[3] = 1.0f, + }, { + .depthStencil.depth = 1.0f, + .depthStencil.stencil = 0 + }}; + + if (!msaaEnabled) { + clearValues[1] = clearValues[2]; + } + + for (uint32_t i = 0; i < nImages; ++i) { + const VkCommandBufferBeginInfo beginInfo = { + .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, + .flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT, + .pInheritanceInfo = NULL + }; + vkBeginCommandBuffer(commandBuffers[i], &beginInfo); + + const VkRenderPassBeginInfo renderPassBeginInfo = { + .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, + .renderPass = renderPass, + .framebuffer = swapchainFramebuffers[i], + .renderArea.offset = { 0, 0 }, + .renderArea.extent = swapchainExtent, + .clearValueCount = msaaEnabled ? 3 : 2, + .pClearValues = clearValues + }; + + vkCmdBeginRenderPass(commandBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); + vkCmdBindPipeline(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline); + const uint32_t dynamicOffsets[] = { i*uniformAlignment }; + vkCmdBindDescriptorSets(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, + pipelineLayout, 0, 1, &descriptorSet, 1, dynamicOffsets); + const VkDeviceSize vertexOffsets[] = { 0 }; + vkCmdBindVertexBuffers(commandBuffers[i], 0, 1, &meshBuffer, vertexOffsets); + vkCmdBindIndexBuffer(commandBuffers[i], meshBuffer, indexOffset, indexType); + /*vkCmdDraw(commandBuffers[i], vertexCount, 1, 0, 0);*/ + vkCmdDrawIndexed(commandBuffers[i], indexCount, 1, 0, 0, 0); + vkCmdEndRenderPass(commandBuffers[i]); + + VkResult result; + if ((result = vkEndCommandBuffer(commandBuffers[i]))) { + ERRFQ("Could not record command buffer: %d\n", result); + } + } +} + +// FIXME: Memory leak +void recreateSwapchain() +{ + oldRawSwapchain = rawSwapchain; + destroyGraphicsPipeline(); + + // endVulkan(); + destroySwapchainFramebuffers(); + destroyRenderPass(); + if (msaaEnabled) destroyMultisampleImage(); + destroyDepthImage(); + destroySwapchainImageViews(); + //destroySwapchain(); + + // beginVulkan(); + createSwapchain(); + createSwapchainImageViews(); + allocateCommandBuffers(); + createDepthImage(); + if (msaaEnabled) createMultisampleImage(); + createRenderPass(); + createSwapchainFramebuffers(); + + createGraphicsPipeline(); + + recordCommandBuffers(); +} + +float angle = 0.0f; +uint32_t syncIndex; +float location[4][4]; +void *data; +uint32_t imageIndex; + +PuglStatus onResize(PuglView *view) +{ + //vkDeviceWaitIdle(device); + //SDL_Vulkan_GetDrawableSize(win, &width, &height); + //int width, height; + //getFrame(view, &width, &height); + recreateSwapchain(); + /* Adjust aspect ratio */ + load_perspective( + uniformData.proj, + DEGREES(45), + (float)swapchainExtent.width/swapchainExtent.height, 0.1f, 10.0f + ); +} + +PuglStatus onDisplay(PuglView *view) +{ + float rotation[4][4]; + //angle += PI/60.0f; + //if (angle > TWOPI) { + // angle -= TWOPI; + //} + load_rotation_y(rotation, angle); + matmul4(location, rotation, uniformData.model); + + VkResult result; +retry: switch(vkAcquireNextImageKHR( + device, + rawSwapchain, + UINT64_MAX, + imageAvailableSemaphore, + VK_NULL_HANDLE, + &imageIndex + )) { + case VK_SUCCESS: + break; + case VK_SUBOPTIMAL_KHR: + case VK_ERROR_OUT_OF_DATE_KHR: + printf("REACTIVE resize\n"); + onResize(view); + goto retry; + default: + fprintf(stderr, "vkAcquireNextImageKHR: %d\n", result); + exit(1); + } + vkWaitForFences(device, 1, &imageFences[imageIndex], VK_TRUE, UINT64_MAX); + memcpy(data + imageIndex*uniformAlignment, &uniformData, sizeof(uniformData)); + //VkMappedMemoryRange uniformRange = { + // .sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE, + // .memory = uniformMemory, + // .offset = imageIndex*uniformAlignment, + // .size = sizeof(uniformData) + //}; + //vkFlushMappedMemoryRanges(device, 1, &uniformRange); + vmaFlushAllocation(vmaAllocator, uniformVma, imageIndex*uniformAlignment, sizeof(uniformData)); + vkResetFences(device, 1, &imageFences[imageIndex]); + VkPipelineStageFlags waitStage = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; + const VkSubmitInfo submitInfo = { + .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO, + .waitSemaphoreCount = 1, + .pWaitSemaphores = &imageAvailableSemaphore, + .pWaitDstStageMask = &waitStage, + .commandBufferCount = 1, + .pCommandBuffers = &commandBuffers[imageIndex], + .signalSemaphoreCount = 1, + .pSignalSemaphores = &renderFinishedSemaphore + }; + if ((result = vkQueueSubmit(graphicsQueue, 1, &submitInfo, imageFences[imageIndex]))) { + ERRFQ("Could not submit draw command buffer: %d\n", result); + } + + const VkPresentInfoKHR presentInfo = { + .sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR, + .waitSemaphoreCount = 1, + .pWaitSemaphores = &renderFinishedSemaphore, + .swapchainCount = 1, + .pSwapchains = &rawSwapchain, + .pImageIndices = &imageIndex, + .pResults = NULL + }; + vkQueuePresentKHR(graphicsQueue, &presentInfo); + //printf("I:\t%d\tS:\t%d\n", imageIndex, syncIndex); + syncIndex = (syncIndex+1) >= nImages ? 0 : (syncIndex+1); + //vkQueueWaitIdle(graphicsQueue); + return PUGL_SUCCESS; +} + +void cleanup() +{ + vkDeviceWaitIdle(device); + //vkUnmapMemory(device, uniformMemory); + vmaUnmapMemory(vmaAllocator, uniformVma); + + teardownScene(); + endVulkan(); + deinitVulkan(); + puglFreeView(view); + puglFreeWorld(world); + + /* + * Vulkan library MUST be unloaded AFTER call to XCloseDisplay() or it will segfault + */ + vkDestroyInstance(instance, NULL); +} + +int shouldResize(PuglView *view, const PuglEvent *e) +{ + if (swapchainExtent.width != e->configure.width || + swapchainExtent.height != e->configure.height) { + return 1; + } + return 0; +} + +void transformCoords(const PuglView *v, const PuglEvent *e, float *x, float *y) +{ + const PuglRect rect = puglGetFrame(v); + const double nx = e->motion.x/rect.width; + const double ny = e->motion.y/rect.height; + *x = 2.0*(nx-0.5); + *y = 2.0*(ny-0.5); +} + +int running = 1; + +PuglStatus onEvent(PuglView *view, const PuglEvent *e) +{ + float mx, my, x, y; + const float z = -4.0f; + switch (e->type) { + case PUGL_CONFIGURE: + if (shouldResize(view, e)) onResize(view); + break; + case PUGL_EXPOSE: + onDisplay(view); + break; + case PUGL_CLOSE: + running = 0; + break; + case PUGL_KEY_PRESS: + break; + case PUGL_MOTION_NOTIFY: + transformCoords(view, e, &mx, &my); + x = -mx*z/uniformData.proj[0][0]; + y = -my*z*(uniformData.proj[0][0]/uniformData.proj[1][1]); + load_location(location, x, y, z); + puglPostRedisplay(view); + break; + default: + break; + } + return PUGL_SUCCESS; +} + +int main(int argc, char **argv) +{ + //if (SDL_Init(SDL_INIT_EVERYTHING) < 0) { + // ERRQ(SDL_GetError()); + //} + + world = puglNewWorld(); + if (!world) { + ERRQ("Could not create world\n"); + } + view = puglNewView(world); + if (!view) { + ERRQ("Could not create view\n"); + } + puglSetClassName(world, "Pugl Vulkan"); + const PuglRect frame = { 0, 0, 1280, 720 }; + puglSetFrame(view, frame); + puglSetBackend(view, NULL); + puglSetViewHint(view, PUGL_RESIZABLE, 1); + PuglStatus status; + if ((status = puglCreateWindow(view, "Blank Window"))) { + fprintf(stderr, "Could not create window: %d\n", status); + exit(1); + } + puglShowWindow(view); + //puglPollEvents(world, -1); + + //SDL_Vulkan_GetDrawableSize(win, &width, &height); + int width, height; + getFrame(view, &width, &height); + initVulkan(); + beginVulkan(width, height); + setupScene(); + populateUniformBuffer(); + + recordCommandBuffers(); + + load_location(location, 0.0f, 0.5f, -4.0f); + + //vkMapMemory(device, uniformMemory, 0, nImages*uniformAlignment, 0, &data); + vmaMapMemory(vmaAllocator, uniformVma, &data); + + puglSetEventFunc(view, onEvent); + + while (running) { + puglPollEvents(world, -1); + puglDispatchEvents(world); + } +quit: + cleanup(); + //SDL_Quit(); + return 0; +} diff --git a/shader.frag b/shader.frag new file mode 100644 index 0000000..3ead2db --- /dev/null +++ b/shader.frag @@ -0,0 +1,48 @@ +#version 450 +#extension GL_ARB_separate_shader_objects : enable + +layout(location = 0) in vec3 normal; +layout(location = 1) in vec3 fragPos; + +layout(location = 0) out vec4 outColor; + +float tubeIntegral(const float a, const float b, const float c, const float d, const float t) +{ + return (b*(c*t + d) - a*(c + t))/((c*c - d)*sqrt(t*(2*c + t) + d)); +} + +/* l0: vector to the center of the light from the fragment + * n: normalized surface normal of the fragment + * w: normalized basis vector for the width axis of the light + * halfWidth: half the width of the light + */ +float tubeLight(const vec3 l0, const vec3 n, const vec3 w, const float halfWidth) +{ + const float a = dot(n, l0); + const float b = dot(n, w); + const float c = dot(l0, w); + const float d = dot(l0, l0); + const float m = sign(b + max(0.0, a)*max(0.0, b)); + const float zeroBound = -a/b; + const float lowerBound = clamp(zeroBound, -halfWidth, halfWidth); + const float upperBound = m*halfWidth; + return m*(tubeIntegral(a, b, c, d, upperBound) - tubeIntegral(a, b, c, d, lowerBound)); +} + +void main() { + const vec3 lightPos = vec3(1.0, 2.0, -0.0); + const vec3 lightDir = lightPos - fragPos; + + //const vec3 lightW = normalize(vec3(1.0, 0.0, 0.0)); + const float strength = 4.0; + const float invFalloff = strength/dot(lightDir, lightDir); + outColor = vec4(max(0.0, dot(normalize(normal), normalize(lightDir)))*invFalloff*vec3(1.0), 1.0); + //outColor = vec4(tubeLight(lightDir, normalize(normal), lightW, 5)*fragColor, 1.0); + //outColor.xyz += vec3(0.0625)*fragColor; + //const vec3 viewPos = -fragPos; + //const vec3 halfway = normalize(normalize(lightDir) - normalize(fragPos)); + //const float specular = pow(max(0.0, dot(normalize(normal), halfway))*invFalloff, 20.0); + //const float specular = pow(tubeLight(lightDir, halfway, lightW, 5), 100.0); + //outColor = vec4(specular*vec3(1.0), 1.0); + //outColor = vec4(1.0, 1.0, 1.0, 1.0); +} diff --git a/shader.vert b/shader.vert new file mode 100644 index 0000000..0064e71 --- /dev/null +++ b/shader.vert @@ -0,0 +1,27 @@ +#version 450 +#extension GL_ARB_separate_shader_objects : enable + +layout(set = 0, binding = 0) uniform UniformBufferObject { + mat4 model; + mat4 view; + mat4 proj; +} ubo; + +layout(location = 0) in vec3 inPosition; +layout(location = 1) in vec3 inNormal; +layout(location = 2) in vec2 inUv; + +layout(location = 0) out vec3 normal; +layout(location = 1) out vec3 fragPos; + +//out gl_PerVertex { +// vec4 gl_Position; +//}; + +void main() { + //mat3 normalMatrix = transpose(inverse(mat3(ubo.model))); + gl_Position = ubo.proj * ubo.view * ubo.model * vec4(inPosition, 1.0); + normal = (ubo.model * vec4(inNormal, 0.0)).xyz; + //normal = inNormal; + fragPos = (ubo.view * ubo.model * vec4(inPosition, 1.0)).xyz; +} diff --git a/vk_mem_alloc.cc b/vk_mem_alloc.cc new file mode 100644 index 0000000..a2023d3 --- /dev/null +++ b/vk_mem_alloc.cc @@ -0,0 +1,2 @@ +#define VMA_IMPLEMENTATION +#include "vk_mem_alloc.h" diff --git a/vk_mem_alloc.h b/vk_mem_alloc.h new file mode 100644 index 0000000..623f860 --- /dev/null +++ b/vk_mem_alloc.h @@ -0,0 +1,17087 @@ +//
+// Copyright (c) 2017-2019 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+//
+
+#ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H
+#define AMD_VULKAN_MEMORY_ALLOCATOR_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/** \mainpage Vulkan Memory Allocator
+
+<b>Version 2.3.0-development</b> (2019-07-02)
+
+Copyright (c) 2017-2018 Advanced Micro Devices, Inc. All rights reserved. \n
+License: MIT
+
+Documentation of all members: vk_mem_alloc.h
+
+\section main_table_of_contents Table of contents
+
+- <b>User guide</b>
+ - \subpage quick_start
+ - [Project setup](@ref quick_start_project_setup)
+ - [Initialization](@ref quick_start_initialization)
+ - [Resource allocation](@ref quick_start_resource_allocation)
+ - \subpage choosing_memory_type
+ - [Usage](@ref choosing_memory_type_usage)
+ - [Required and preferred flags](@ref choosing_memory_type_required_preferred_flags)
+ - [Explicit memory types](@ref choosing_memory_type_explicit_memory_types)
+ - [Custom memory pools](@ref choosing_memory_type_custom_memory_pools)
+ - [Dedicated allocations](@ref choosing_memory_type_dedicated_allocations)
+ - \subpage memory_mapping
+ - [Mapping functions](@ref memory_mapping_mapping_functions)
+ - [Persistently mapped memory](@ref memory_mapping_persistently_mapped_memory)
+ - [Cache control](@ref memory_mapping_cache_control)
+ - [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable)
+ - \subpage custom_memory_pools
+ - [Choosing memory type index](@ref custom_memory_pools_MemTypeIndex)
+ - [Linear allocation algorithm](@ref linear_algorithm)
+ - [Free-at-once](@ref linear_algorithm_free_at_once)
+ - [Stack](@ref linear_algorithm_stack)
+ - [Double stack](@ref linear_algorithm_double_stack)
+ - [Ring buffer](@ref linear_algorithm_ring_buffer)
+ - [Buddy allocation algorithm](@ref buddy_algorithm)
+ - \subpage defragmentation
+ - [Defragmenting CPU memory](@ref defragmentation_cpu)
+ - [Defragmenting GPU memory](@ref defragmentation_gpu)
+ - [Additional notes](@ref defragmentation_additional_notes)
+ - [Writing custom allocation algorithm](@ref defragmentation_custom_algorithm)
+ - \subpage lost_allocations
+ - \subpage statistics
+ - [Numeric statistics](@ref statistics_numeric_statistics)
+ - [JSON dump](@ref statistics_json_dump)
+ - \subpage allocation_annotation
+ - [Allocation user data](@ref allocation_user_data)
+ - [Allocation names](@ref allocation_names)
+ - \subpage debugging_memory_usage
+ - [Memory initialization](@ref debugging_memory_usage_initialization)
+ - [Margins](@ref debugging_memory_usage_margins)
+ - [Corruption detection](@ref debugging_memory_usage_corruption_detection)
+ - \subpage record_and_replay
+- \subpage usage_patterns
+ - [Common mistakes](@ref usage_patterns_common_mistakes)
+ - [Simple patterns](@ref usage_patterns_simple)
+ - [Advanced patterns](@ref usage_patterns_advanced)
+- \subpage configuration
+ - [Pointers to Vulkan functions](@ref config_Vulkan_functions)
+ - [Custom host memory allocator](@ref custom_memory_allocator)
+ - [Device memory allocation callbacks](@ref allocation_callbacks)
+ - [Device heap memory limit](@ref heap_memory_limit)
+ - \subpage vk_khr_dedicated_allocation
+- \subpage general_considerations
+ - [Thread safety](@ref general_considerations_thread_safety)
+ - [Validation layer warnings](@ref general_considerations_validation_layer_warnings)
+ - [Allocation algorithm](@ref general_considerations_allocation_algorithm)
+ - [Features not supported](@ref general_considerations_features_not_supported)
+
+\section main_see_also See also
+
+- [Product page on GPUOpen](https://gpuopen.com/gaming-product/vulkan-memory-allocator/)
+- [Source repository on GitHub](https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator)
+
+
+
+
+\page quick_start Quick start
+
+\section quick_start_project_setup Project setup
+
+Vulkan Memory Allocator comes in form of a "stb-style" single header file.
+You don't need to build it as a separate library project.
+You can add this file directly to your project and submit it to code repository next to your other source files.
+
+"Single header" doesn't mean that everything is contained in C/C++ declarations,
+like it tends to be in case of inline functions or C++ templates.
+It means that implementation is bundled with interface in a single file and needs to be extracted using preprocessor macro.
+If you don't do it properly, you will get linker errors.
+
+To do it properly:
+
+-# Include "vk_mem_alloc.h" file in each CPP file where you want to use the library.
+ This includes declarations of all members of the library.
+-# In exacly one CPP file define following macro before this include.
+ It enables also internal definitions.
+
+\code
+#define VMA_IMPLEMENTATION
+#include "vk_mem_alloc.h"
+\endcode
+
+It may be a good idea to create dedicated CPP file just for this purpose.
+
+Note on language: This library is written in C++, but has C-compatible interface.
+Thus you can include and use vk_mem_alloc.h in C or C++ code, but full
+implementation with `VMA_IMPLEMENTATION` macro must be compiled as C++, NOT as C.
+
+Please note that this library includes header `<vulkan/vulkan.h>`, which in turn
+includes `<windows.h>` on Windows. If you need some specific macros defined
+before including these headers (like `WIN32_LEAN_AND_MEAN` or
+`WINVER` for Windows, `VK_USE_PLATFORM_WIN32_KHR` for Vulkan), you must define
+them before every `#include` of this library.
+
+
+\section quick_start_initialization Initialization
+
+At program startup:
+
+-# Initialize Vulkan to have `VkPhysicalDevice` and `VkDevice` object.
+-# Fill VmaAllocatorCreateInfo structure and create #VmaAllocator object by
+ calling vmaCreateAllocator().
+
+\code
+VmaAllocatorCreateInfo allocatorInfo = {};
+allocatorInfo.physicalDevice = physicalDevice;
+allocatorInfo.device = device;
+
+VmaAllocator allocator;
+vmaCreateAllocator(&allocatorInfo, &allocator);
+\endcode
+
+\section quick_start_resource_allocation Resource allocation
+
+When you want to create a buffer or image:
+
+-# Fill `VkBufferCreateInfo` / `VkImageCreateInfo` structure.
+-# Fill VmaAllocationCreateInfo structure.
+-# Call vmaCreateBuffer() / vmaCreateImage() to get `VkBuffer`/`VkImage` with memory
+ already allocated and bound to it.
+
+\code
+VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufferInfo.size = 65536;
+bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+VmaAllocationCreateInfo allocInfo = {};
+allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
+
+VkBuffer buffer;
+VmaAllocation allocation;
+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
+\endcode
+
+Don't forget to destroy your objects when no longer needed:
+
+\code
+vmaDestroyBuffer(allocator, buffer, allocation);
+vmaDestroyAllocator(allocator);
+\endcode
+
+
+\page choosing_memory_type Choosing memory type
+
+Physical devices in Vulkan support various combinations of memory heaps and
+types. Help with choosing correct and optimal memory type for your specific
+resource is one of the key features of this library. You can use it by filling
+appropriate members of VmaAllocationCreateInfo structure, as described below.
+You can also combine multiple methods.
+
+-# If you just want to find memory type index that meets your requirements, you
+ can use function: vmaFindMemoryTypeIndex(), vmaFindMemoryTypeIndexForBufferInfo(),
+ vmaFindMemoryTypeIndexForImageInfo().
+-# If you want to allocate a region of device memory without association with any
+ specific image or buffer, you can use function vmaAllocateMemory(). Usage of
+ this function is not recommended and usually not needed.
+ vmaAllocateMemoryPages() function is also provided for creating multiple allocations at once,
+ which may be useful for sparse binding.
+-# If you already have a buffer or an image created, you want to allocate memory
+ for it and then you will bind it yourself, you can use function
+ vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage().
+ For binding you should use functions: vmaBindBufferMemory(), vmaBindImageMemory()
+ or their extended versions: vmaBindBufferMemory2(), vmaBindImageMemory2().
+-# If you want to create a buffer or an image, allocate memory for it and bind
+ them together, all in one call, you can use function vmaCreateBuffer(),
+ vmaCreateImage(). This is the easiest and recommended way to use this library.
+
+When using 3. or 4., the library internally queries Vulkan for memory types
+supported for that buffer or image (function `vkGetBufferMemoryRequirements()`)
+and uses only one of these types.
+
+If no memory type can be found that meets all the requirements, these functions
+return `VK_ERROR_FEATURE_NOT_PRESENT`.
+
+You can leave VmaAllocationCreateInfo structure completely filled with zeros.
+It means no requirements are specified for memory type.
+It is valid, although not very useful.
+
+\section choosing_memory_type_usage Usage
+
+The easiest way to specify memory requirements is to fill member
+VmaAllocationCreateInfo::usage using one of the values of enum #VmaMemoryUsage.
+It defines high level, common usage types.
+For more details, see description of this enum.
+
+For example, if you want to create a uniform buffer that will be filled using
+transfer only once or infrequently and used for rendering every frame, you can
+do it using following code:
+
+\code
+VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufferInfo.size = 65536;
+bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+VmaAllocationCreateInfo allocInfo = {};
+allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
+
+VkBuffer buffer;
+VmaAllocation allocation;
+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
+\endcode
+
+\section choosing_memory_type_required_preferred_flags Required and preferred flags
+
+You can specify more detailed requirements by filling members
+VmaAllocationCreateInfo::requiredFlags and VmaAllocationCreateInfo::preferredFlags
+with a combination of bits from enum `VkMemoryPropertyFlags`. For example,
+if you want to create a buffer that will be persistently mapped on host (so it
+must be `HOST_VISIBLE`) and preferably will also be `HOST_COHERENT` and `HOST_CACHED`,
+use following code:
+
+\code
+VmaAllocationCreateInfo allocInfo = {};
+allocInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+allocInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
+allocInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
+
+VkBuffer buffer;
+VmaAllocation allocation;
+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
+\endcode
+
+A memory type is chosen that has all the required flags and as many preferred
+flags set as possible.
+
+If you use VmaAllocationCreateInfo::usage, it is just internally converted to
+a set of required and preferred flags.
+
+\section choosing_memory_type_explicit_memory_types Explicit memory types
+
+If you inspected memory types available on the physical device and you have
+a preference for memory types that you want to use, you can fill member
+VmaAllocationCreateInfo::memoryTypeBits. It is a bit mask, where each bit set
+means that a memory type with that index is allowed to be used for the
+allocation. Special value 0, just like `UINT32_MAX`, means there are no
+restrictions to memory type index.
+
+Please note that this member is NOT just a memory type index.
+Still you can use it to choose just one, specific memory type.
+For example, if you already determined that your buffer should be created in
+memory type 2, use following code:
+
+\code
+uint32_t memoryTypeIndex = 2;
+
+VmaAllocationCreateInfo allocInfo = {};
+allocInfo.memoryTypeBits = 1u << memoryTypeIndex;
+
+VkBuffer buffer;
+VmaAllocation allocation;
+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
+\endcode
+
+\section choosing_memory_type_custom_memory_pools Custom memory pools
+
+If you allocate from custom memory pool, all the ways of specifying memory
+requirements described above are not applicable and the aforementioned members
+of VmaAllocationCreateInfo structure are ignored. Memory type is selected
+explicitly when creating the pool and then used to make all the allocations from
+that pool. For further details, see \ref custom_memory_pools.
+
+\section choosing_memory_type_dedicated_allocations Dedicated allocations
+
+Memory for allocations is reserved out of larger block of `VkDeviceMemory`
+allocated from Vulkan internally. That's the main feature of this whole library.
+You can still request a separate memory block to be created for an allocation,
+just like you would do in a trivial solution without using any allocator.
+In that case, a buffer or image is always bound to that memory at offset 0.
+This is called a "dedicated allocation".
+You can explicitly request it by using flag #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
+The library can also internally decide to use dedicated allocation in some cases, e.g.:
+
+- When the size of the allocation is large.
+- When [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension is enabled
+ and it reports that dedicated allocation is required or recommended for the resource.
+- When allocation of next big memory block fails due to not enough device memory,
+ but allocation with the exact requested size succeeds.
+
+
+\page memory_mapping Memory mapping
+
+To "map memory" in Vulkan means to obtain a CPU pointer to `VkDeviceMemory`,
+to be able to read from it or write to it in CPU code.
+Mapping is possible only of memory allocated from a memory type that has
+`VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag.
+Functions `vkMapMemory()`, `vkUnmapMemory()` are designed for this purpose.
+You can use them directly with memory allocated by this library,
+but it is not recommended because of following issue:
+Mapping the same `VkDeviceMemory` block multiple times is illegal - only one mapping at a time is allowed.
+This includes mapping disjoint regions. Mapping is not reference-counted internally by Vulkan.
+Because of this, Vulkan Memory Allocator provides following facilities:
+
+\section memory_mapping_mapping_functions Mapping functions
+
+The library provides following functions for mapping of a specific #VmaAllocation: vmaMapMemory(), vmaUnmapMemory().
+They are safer and more convenient to use than standard Vulkan functions.
+You can map an allocation multiple times simultaneously - mapping is reference-counted internally.
+You can also map different allocations simultaneously regardless of whether they use the same `VkDeviceMemory` block.
+The way it's implemented is that the library always maps entire memory block, not just region of the allocation.
+For further details, see description of vmaMapMemory() function.
+Example:
+
+\code
+// Having these objects initialized:
+
+struct ConstantBuffer
+{
+ ...
+};
+ConstantBuffer constantBufferData;
+
+VmaAllocator allocator;
+VkBuffer constantBuffer;
+VmaAllocation constantBufferAllocation;
+
+// You can map and fill your buffer using following code:
+
+void* mappedData;
+vmaMapMemory(allocator, constantBufferAllocation, &mappedData);
+memcpy(mappedData, &constantBufferData, sizeof(constantBufferData));
+vmaUnmapMemory(allocator, constantBufferAllocation);
+\endcode
+
+When mapping, you may see a warning from Vulkan validation layer similar to this one:
+
+<i>Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.</i>
+
+It happens because the library maps entire `VkDeviceMemory` block, where different
+types of images and buffers may end up together, especially on GPUs with unified memory like Intel.
+You can safely ignore it if you are sure you access only memory of the intended
+object that you wanted to map.
+
+
+\section memory_mapping_persistently_mapped_memory Persistently mapped memory
+
+Kepping your memory persistently mapped is generally OK in Vulkan.
+You don't need to unmap it before using its data on the GPU.
+The library provides a special feature designed for that:
+Allocations made with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag set in
+VmaAllocationCreateInfo::flags stay mapped all the time,
+so you can just access CPU pointer to it any time
+without a need to call any "map" or "unmap" function.
+Example:
+
+\code
+VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufCreateInfo.size = sizeof(ConstantBuffer);
+bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
+allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
+
+VkBuffer buf;
+VmaAllocation alloc;
+VmaAllocationInfo allocInfo;
+vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
+
+// Buffer is already mapped. You can access its memory.
+memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData));
+\endcode
+
+There are some exceptions though, when you should consider mapping memory only for a short period of time:
+
+- When operating system is Windows 7 or 8.x (Windows 10 is not affected because it uses WDDM2),
+ device is discrete AMD GPU,
+ and memory type is the special 256 MiB pool of `DEVICE_LOCAL + HOST_VISIBLE` memory
+ (selected when you use #VMA_MEMORY_USAGE_CPU_TO_GPU),
+ then whenever a memory block allocated from this memory type stays mapped
+ for the time of any call to `vkQueueSubmit()` or `vkQueuePresentKHR()`, this
+ block is migrated by WDDM to system RAM, which degrades performance. It doesn't
+ matter if that particular memory block is actually used by the command buffer
+ being submitted.
+- On Mac/MoltenVK there is a known bug - [Issue #175](https://github.com/KhronosGroup/MoltenVK/issues/175)
+ which requires unmapping before GPU can see updated texture.
+- Keeping many large memory blocks mapped may impact performance or stability of some debugging tools.
+
+\section memory_mapping_cache_control Cache control
+
+Memory in Vulkan doesn't need to be unmapped before using it on GPU,
+but unless a memory types has `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flag set,
+you need to manually invalidate cache before reading of mapped pointer
+and flush cache after writing to mapped pointer.
+Vulkan provides following functions for this purpose `vkFlushMappedMemoryRanges()`,
+`vkInvalidateMappedMemoryRanges()`, but this library provides more convenient
+functions that refer to given allocation object: vmaFlushAllocation(),
+vmaInvalidateAllocation().
+
+Regions of memory specified for flush/invalidate must be aligned to
+`VkPhysicalDeviceLimits::nonCoherentAtomSize`. This is automatically ensured by the library.
+In any memory type that is `HOST_VISIBLE` but not `HOST_COHERENT`, all allocations
+within blocks are aligned to this value, so their offsets are always multiply of
+`nonCoherentAtomSize` and two different allocations never share same "line" of this size.
+
+Please note that memory allocated with #VMA_MEMORY_USAGE_CPU_ONLY is guaranteed to be `HOST_COHERENT`.
+
+Also, Windows drivers from all 3 PC GPU vendors (AMD, Intel, NVIDIA)
+currently provide `HOST_COHERENT` flag on all memory types that are
+`HOST_VISIBLE`, so on this platform you may not need to bother.
+
+\section memory_mapping_finding_if_memory_mappable Finding out if memory is mappable
+
+It may happen that your allocation ends up in memory that is `HOST_VISIBLE` (available for mapping)
+despite it wasn't explicitly requested.
+For example, application may work on integrated graphics with unified memory (like Intel) or
+allocation from video memory might have failed, so the library chose system memory as fallback.
+
+You can detect this case and map such allocation to access its memory on CPU directly,
+instead of launching a transfer operation.
+In order to do that: inspect `allocInfo.memoryType`, call vmaGetMemoryTypeProperties(),
+and look for `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag in properties of that memory type.
+
+\code
+VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufCreateInfo.size = sizeof(ConstantBuffer);
+bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
+allocCreateInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+
+VkBuffer buf;
+VmaAllocation alloc;
+VmaAllocationInfo allocInfo;
+vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
+
+VkMemoryPropertyFlags memFlags;
+vmaGetMemoryTypeProperties(allocator, allocInfo.memoryType, &memFlags);
+if((memFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
+{
+ // Allocation ended up in mappable memory. You can map it and access it directly.
+ void* mappedData;
+ vmaMapMemory(allocator, alloc, &mappedData);
+ memcpy(mappedData, &constantBufferData, sizeof(constantBufferData));
+ vmaUnmapMemory(allocator, alloc);
+}
+else
+{
+ // Allocation ended up in non-mappable memory.
+ // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer.
+}
+\endcode
+
+You can even use #VMA_ALLOCATION_CREATE_MAPPED_BIT flag while creating allocations
+that are not necessarily `HOST_VISIBLE` (e.g. using #VMA_MEMORY_USAGE_GPU_ONLY).
+If the allocation ends up in memory type that is `HOST_VISIBLE`, it will be persistently mapped and you can use it directly.
+If not, the flag is just ignored.
+Example:
+
+\code
+VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufCreateInfo.size = sizeof(ConstantBuffer);
+bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
+allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
+
+VkBuffer buf;
+VmaAllocation alloc;
+VmaAllocationInfo allocInfo;
+vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
+
+if(allocInfo.pUserData != nullptr)
+{
+ // Allocation ended up in mappable memory.
+ // It's persistently mapped. You can access it directly.
+ memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData));
+}
+else
+{
+ // Allocation ended up in non-mappable memory.
+ // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer.
+}
+\endcode
+
+
+\page custom_memory_pools Custom memory pools
+
+A memory pool contains a number of `VkDeviceMemory` blocks.
+The library automatically creates and manages default pool for each memory type available on the device.
+Default memory pool automatically grows in size.
+Size of allocated blocks is also variable and managed automatically.
+
+You can create custom pool and allocate memory out of it.
+It can be useful if you want to:
+
+- Keep certain kind of allocations separate from others.
+- Enforce particular, fixed size of Vulkan memory blocks.
+- Limit maximum amount of Vulkan memory allocated for that pool.
+- Reserve minimum or fixed amount of Vulkan memory always preallocated for that pool.
+
+To use custom memory pools:
+
+-# Fill VmaPoolCreateInfo structure.
+-# Call vmaCreatePool() to obtain #VmaPool handle.
+-# When making an allocation, set VmaAllocationCreateInfo::pool to this handle.
+ You don't need to specify any other parameters of this structure, like `usage`.
+
+Example:
+
+\code
+// Create a pool that can have at most 2 blocks, 128 MiB each.
+VmaPoolCreateInfo poolCreateInfo = {};
+poolCreateInfo.memoryTypeIndex = ...
+poolCreateInfo.blockSize = 128ull * 1024 * 1024;
+poolCreateInfo.maxBlockCount = 2;
+
+VmaPool pool;
+vmaCreatePool(allocator, &poolCreateInfo, &pool);
+
+// Allocate a buffer out of it.
+VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufCreateInfo.size = 1024;
+bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.pool = pool;
+
+VkBuffer buf;
+VmaAllocation alloc;
+VmaAllocationInfo allocInfo;
+vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
+\endcode
+
+You have to free all allocations made from this pool before destroying it.
+
+\code
+vmaDestroyBuffer(allocator, buf, alloc);
+vmaDestroyPool(allocator, pool);
+\endcode
+
+\section custom_memory_pools_MemTypeIndex Choosing memory type index
+
+When creating a pool, you must explicitly specify memory type index.
+To find the one suitable for your buffers or images, you can use helper functions
+vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo().
+You need to provide structures with example parameters of buffers or images
+that you are going to create in that pool.
+
+\code
+VkBufferCreateInfo exampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+exampleBufCreateInfo.size = 1024; // Whatever.
+exampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; // Change if needed.
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; // Change if needed.
+
+uint32_t memTypeIndex;
+vmaFindMemoryTypeIndexForBufferInfo(allocator, &exampleBufCreateInfo, &allocCreateInfo, &memTypeIndex);
+
+VmaPoolCreateInfo poolCreateInfo = {};
+poolCreateInfo.memoryTypeIndex = memTypeIndex;
+// ...
+\endcode
+
+When creating buffers/images allocated in that pool, provide following parameters:
+
+- `VkBufferCreateInfo`: Prefer to pass same parameters as above.
+ Otherwise you risk creating resources in a memory type that is not suitable for them, which may result in undefined behavior.
+ Using different `VK_BUFFER_USAGE_` flags may work, but you shouldn't create images in a pool intended for buffers
+ or the other way around.
+- VmaAllocationCreateInfo: You don't need to pass same parameters. Fill only `pool` member.
+ Other members are ignored anyway.
+
+\section linear_algorithm Linear allocation algorithm
+
+Each Vulkan memory block managed by this library has accompanying metadata that
+keeps track of used and unused regions. By default, the metadata structure and
+algorithm tries to find best place for new allocations among free regions to
+optimize memory usage. This way you can allocate and free objects in any order.
+
+![Default allocation algorithm](../gfx/Linear_allocator_1_algo_default.png)
+
+Sometimes there is a need to use simpler, linear allocation algorithm. You can
+create custom pool that uses such algorithm by adding flag
+#VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating
+#VmaPool object. Then an alternative metadata management is used. It always
+creates new allocations after last one and doesn't reuse free regions after
+allocations freed in the middle. It results in better allocation performance and
+less memory consumed by metadata.
+
+![Linear allocation algorithm](../gfx/Linear_allocator_2_algo_linear.png)
+
+With this one flag, you can create a custom pool that can be used in many ways:
+free-at-once, stack, double stack, and ring buffer. See below for details.
+
+\subsection linear_algorithm_free_at_once Free-at-once
+
+In a pool that uses linear algorithm, you still need to free all the allocations
+individually, e.g. by using vmaFreeMemory() or vmaDestroyBuffer(). You can free
+them in any order. New allocations are always made after last one - free space
+in the middle is not reused. However, when you release all the allocation and
+the pool becomes empty, allocation starts from the beginning again. This way you
+can use linear algorithm to speed up creation of allocations that you are going
+to release all at once.
+
+![Free-at-once](../gfx/Linear_allocator_3_free_at_once.png)
+
+This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount
+value that allows multiple memory blocks.
+
+\subsection linear_algorithm_stack Stack
+
+When you free an allocation that was created last, its space can be reused.
+Thanks to this, if you always release allocations in the order opposite to their
+creation (LIFO - Last In First Out), you can achieve behavior of a stack.
+
+![Stack](../gfx/Linear_allocator_4_stack.png)
+
+This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount
+value that allows multiple memory blocks.
+
+\subsection linear_algorithm_double_stack Double stack
+
+The space reserved by a custom pool with linear algorithm may be used by two
+stacks:
+
+- First, default one, growing up from offset 0.
+- Second, "upper" one, growing down from the end towards lower offsets.
+
+To make allocation from upper stack, add flag #VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT
+to VmaAllocationCreateInfo::flags.
+
+![Double stack](../gfx/Linear_allocator_7_double_stack.png)
+
+Double stack is available only in pools with one memory block -
+VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined.
+
+When the two stacks' ends meet so there is not enough space between them for a
+new allocation, such allocation fails with usual
+`VK_ERROR_OUT_OF_DEVICE_MEMORY` error.
+
+\subsection linear_algorithm_ring_buffer Ring buffer
+
+When you free some allocations from the beginning and there is not enough free space
+for a new one at the end of a pool, allocator's "cursor" wraps around to the
+beginning and starts allocation there. Thanks to this, if you always release
+allocations in the same order as you created them (FIFO - First In First Out),
+you can achieve behavior of a ring buffer / queue.
+
+![Ring buffer](../gfx/Linear_allocator_5_ring_buffer.png)
+
+Pools with linear algorithm support [lost allocations](@ref lost_allocations) when used as ring buffer.
+If there is not enough free space for a new allocation, but existing allocations
+from the front of the queue can become lost, they become lost and the allocation
+succeeds.
+
+![Ring buffer with lost allocations](../gfx/Linear_allocator_6_ring_buffer_lost.png)
+
+Ring buffer is available only in pools with one memory block -
+VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined.
+
+\section buddy_algorithm Buddy allocation algorithm
+
+There is another allocation algorithm that can be used with custom pools, called
+"buddy". Its internal data structure is based on a tree of blocks, each having
+size that is a power of two and a half of its parent's size. When you want to
+allocate memory of certain size, a free node in the tree is located. If it's too
+large, it is recursively split into two halves (called "buddies"). However, if
+requested allocation size is not a power of two, the size of a tree node is
+aligned up to the nearest power of two and the remaining space is wasted. When
+two buddy nodes become free, they are merged back into one larger node.
+
+![Buddy allocator](../gfx/Buddy_allocator.png)
+
+The advantage of buddy allocation algorithm over default algorithm is faster
+allocation and deallocation, as well as smaller external fragmentation. The
+disadvantage is more wasted space (internal fragmentation).
+
+For more information, please read ["Buddy memory allocation" on Wikipedia](https://en.wikipedia.org/wiki/Buddy_memory_allocation)
+or other sources that describe this concept in general.
+
+To use buddy allocation algorithm with a custom pool, add flag
+#VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating
+#VmaPool object.
+
+Several limitations apply to pools that use buddy algorithm:
+
+- It is recommended to use VmaPoolCreateInfo::blockSize that is a power of two.
+ Otherwise, only largest power of two smaller than the size is used for
+ allocations. The remaining space always stays unused.
+- [Margins](@ref debugging_memory_usage_margins) and
+ [corruption detection](@ref debugging_memory_usage_corruption_detection)
+ don't work in such pools.
+- [Lost allocations](@ref lost_allocations) don't work in such pools. You can
+ use them, but they never become lost. Support may be added in the future.
+- [Defragmentation](@ref defragmentation) doesn't work with allocations made from
+ such pool.
+
+\page defragmentation Defragmentation
+
+Interleaved allocations and deallocations of many objects of varying size can
+cause fragmentation over time, which can lead to a situation where the library is unable
+to find a continuous range of free memory for a new allocation despite there is
+enough free space, just scattered across many small free ranges between existing
+allocations.
+
+To mitigate this problem, you can use defragmentation feature:
+structure #VmaDefragmentationInfo2, function vmaDefragmentationBegin(), vmaDefragmentationEnd().
+Given set of allocations,
+this function can move them to compact used memory, ensure more continuous free
+space and possibly also free some `VkDeviceMemory` blocks.
+
+What the defragmentation does is:
+
+- Updates #VmaAllocation objects to point to new `VkDeviceMemory` and offset.
+ After allocation has been moved, its VmaAllocationInfo::deviceMemory and/or
+ VmaAllocationInfo::offset changes. You must query them again using
+ vmaGetAllocationInfo() if you need them.
+- Moves actual data in memory.
+
+What it doesn't do, so you need to do it yourself:
+
+- Recreate buffers and images that were bound to allocations that were defragmented and
+ bind them with their new places in memory.
+ You must use `vkDestroyBuffer()`, `vkDestroyImage()`,
+ `vkCreateBuffer()`, `vkCreateImage()`, vmaBindBufferMemory(), vmaBindImageMemory()
+ for that purpose and NOT vmaDestroyBuffer(),
+ vmaDestroyImage(), vmaCreateBuffer(), vmaCreateImage(), because you don't need to
+ destroy or create allocation objects!
+- Recreate views and update descriptors that point to these buffers and images.
+
+\section defragmentation_cpu Defragmenting CPU memory
+
+Following example demonstrates how you can run defragmentation on CPU.
+Only allocations created in memory types that are `HOST_VISIBLE` can be defragmented.
+Others are ignored.
+
+The way it works is:
+
+- It temporarily maps entire memory blocks when necessary.
+- It moves data using `memmove()` function.
+
+\code
+// Given following variables already initialized:
+VkDevice device;
+VmaAllocator allocator;
+std::vector<VkBuffer> buffers;
+std::vector<VmaAllocation> allocations;
+
+
+const uint32_t allocCount = (uint32_t)allocations.size();
+std::vector<VkBool32> allocationsChanged(allocCount);
+
+VmaDefragmentationInfo2 defragInfo = {};
+defragInfo.allocationCount = allocCount;
+defragInfo.pAllocations = allocations.data();
+defragInfo.pAllocationsChanged = allocationsChanged.data();
+defragInfo.maxCpuBytesToMove = VK_WHOLE_SIZE; // No limit.
+defragInfo.maxCpuAllocationsToMove = UINT32_MAX; // No limit.
+
+VmaDefragmentationContext defragCtx;
+vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx);
+vmaDefragmentationEnd(allocator, defragCtx);
+
+for(uint32_t i = 0; i < allocCount; ++i)
+{
+ if(allocationsChanged[i])
+ {
+ // Destroy buffer that is immutably bound to memory region which is no longer valid.
+ vkDestroyBuffer(device, buffers[i], nullptr);
+
+ // Create new buffer with same parameters.
+ VkBufferCreateInfo bufferInfo = ...;
+ vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]);
+
+ // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning.
+
+ // Bind new buffer to new memory region. Data contained in it is already moved.
+ VmaAllocationInfo allocInfo;
+ vmaGetAllocationInfo(allocator, allocations[i], &allocInfo);
+ vmaBindBufferMemory(allocator, allocations[i], buffers[i]);
+ }
+}
+\endcode
+
+Setting VmaDefragmentationInfo2::pAllocationsChanged is optional.
+This output array tells whether particular allocation in VmaDefragmentationInfo2::pAllocations at the same index
+has been modified during defragmentation.
+You can pass null, but you then need to query every allocation passed to defragmentation
+for new parameters using vmaGetAllocationInfo() if you might need to recreate and rebind a buffer or image associated with it.
+
+If you use [Custom memory pools](@ref choosing_memory_type_custom_memory_pools),
+you can fill VmaDefragmentationInfo2::poolCount and VmaDefragmentationInfo2::pPools
+instead of VmaDefragmentationInfo2::allocationCount and VmaDefragmentationInfo2::pAllocations
+to defragment all allocations in given pools.
+You cannot use VmaDefragmentationInfo2::pAllocationsChanged in that case.
+You can also combine both methods.
+
+\section defragmentation_gpu Defragmenting GPU memory
+
+It is also possible to defragment allocations created in memory types that are not `HOST_VISIBLE`.
+To do that, you need to pass a command buffer that meets requirements as described in
+VmaDefragmentationInfo2::commandBuffer. The way it works is:
+
+- It creates temporary buffers and binds them to entire memory blocks when necessary.
+- It issues `vkCmdCopyBuffer()` to passed command buffer.
+
+Example:
+
+\code
+// Given following variables already initialized:
+VkDevice device;
+VmaAllocator allocator;
+VkCommandBuffer commandBuffer;
+std::vector<VkBuffer> buffers;
+std::vector<VmaAllocation> allocations;
+
+
+const uint32_t allocCount = (uint32_t)allocations.size();
+std::vector<VkBool32> allocationsChanged(allocCount);
+
+VkCommandBufferBeginInfo cmdBufBeginInfo = ...;
+vkBeginCommandBuffer(commandBuffer, &cmdBufBeginInfo);
+
+VmaDefragmentationInfo2 defragInfo = {};
+defragInfo.allocationCount = allocCount;
+defragInfo.pAllocations = allocations.data();
+defragInfo.pAllocationsChanged = allocationsChanged.data();
+defragInfo.maxGpuBytesToMove = VK_WHOLE_SIZE; // Notice it's "GPU" this time.
+defragInfo.maxGpuAllocationsToMove = UINT32_MAX; // Notice it's "GPU" this time.
+defragInfo.commandBuffer = commandBuffer;
+
+VmaDefragmentationContext defragCtx;
+vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx);
+
+vkEndCommandBuffer(commandBuffer);
+
+// Submit commandBuffer.
+// Wait for a fence that ensures commandBuffer execution finished.
+
+vmaDefragmentationEnd(allocator, defragCtx);
+
+for(uint32_t i = 0; i < allocCount; ++i)
+{
+ if(allocationsChanged[i])
+ {
+ // Destroy buffer that is immutably bound to memory region which is no longer valid.
+ vkDestroyBuffer(device, buffers[i], nullptr);
+
+ // Create new buffer with same parameters.
+ VkBufferCreateInfo bufferInfo = ...;
+ vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]);
+
+ // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning.
+
+ // Bind new buffer to new memory region. Data contained in it is already moved.
+ VmaAllocationInfo allocInfo;
+ vmaGetAllocationInfo(allocator, allocations[i], &allocInfo);
+ vmaBindBufferMemory(allocator, allocations[i], buffers[i]);
+ }
+}
+\endcode
+
+You can combine these two methods by specifying non-zero `maxGpu*` as well as `maxCpu*` parameters.
+The library automatically chooses best method to defragment each memory pool.
+
+You may try not to block your entire program to wait until defragmentation finishes,
+but do it in the background, as long as you carefully fullfill requirements described
+in function vmaDefragmentationBegin().
+
+\section defragmentation_additional_notes Additional notes
+
+It is only legal to defragment allocations bound to:
+
+- buffers
+- images created with `VK_IMAGE_CREATE_ALIAS_BIT`, `VK_IMAGE_TILING_LINEAR`, and
+ being currently in `VK_IMAGE_LAYOUT_GENERAL` or `VK_IMAGE_LAYOUT_PREINITIALIZED`.
+
+Defragmentation of images created with `VK_IMAGE_TILING_OPTIMAL` or in any other
+layout may give undefined results.
+
+If you defragment allocations bound to images, new images to be bound to new
+memory region after defragmentation should be created with `VK_IMAGE_LAYOUT_PREINITIALIZED`
+and then transitioned to their original layout from before defragmentation if
+needed using an image memory barrier.
+
+While using defragmentation, you may experience validation layer warnings, which you just need to ignore.
+See [Validation layer warnings](@ref general_considerations_validation_layer_warnings).
+
+Please don't expect memory to be fully compacted after defragmentation.
+Algorithms inside are based on some heuristics that try to maximize number of Vulkan
+memory blocks to make totally empty to release them, as well as to maximimze continuous
+empty space inside remaining blocks, while minimizing the number and size of allocations that
+need to be moved. Some fragmentation may still remain - this is normal.
+
+\section defragmentation_custom_algorithm Writing custom defragmentation algorithm
+
+If you want to implement your own, custom defragmentation algorithm,
+there is infrastructure prepared for that,
+but it is not exposed through the library API - you need to hack its source code.
+Here are steps needed to do this:
+
+-# Main thing you need to do is to define your own class derived from base abstract
+ class `VmaDefragmentationAlgorithm` and implement your version of its pure virtual methods.
+ See definition and comments of this class for details.
+-# Your code needs to interact with device memory block metadata.
+ If you need more access to its data than it's provided by its public interface,
+ declare your new class as a friend class e.g. in class `VmaBlockMetadata_Generic`.
+-# If you want to create a flag that would enable your algorithm or pass some additional
+ flags to configure it, add them to `VmaDefragmentationFlagBits` and use them in
+ VmaDefragmentationInfo2::flags.
+-# Modify function `VmaBlockVectorDefragmentationContext::Begin` to create object
+ of your new class whenever needed.
+
+
+\page lost_allocations Lost allocations
+
+If your game oversubscribes video memory, if may work OK in previous-generation
+graphics APIs (DirectX 9, 10, 11, OpenGL) because resources are automatically
+paged to system RAM. In Vulkan you can't do it because when you run out of
+memory, an allocation just fails. If you have more data (e.g. textures) that can
+fit into VRAM and you don't need it all at once, you may want to upload them to
+GPU on demand and "push out" ones that are not used for a long time to make room
+for the new ones, effectively using VRAM (or a cartain memory pool) as a form of
+cache. Vulkan Memory Allocator can help you with that by supporting a concept of
+"lost allocations".
+
+To create an allocation that can become lost, include #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT
+flag in VmaAllocationCreateInfo::flags. Before using a buffer or image bound to
+such allocation in every new frame, you need to query it if it's not lost.
+To check it, call vmaTouchAllocation().
+If the allocation is lost, you should not use it or buffer/image bound to it.
+You mustn't forget to destroy this allocation and this buffer/image.
+vmaGetAllocationInfo() can also be used for checking status of the allocation.
+Allocation is lost when returned VmaAllocationInfo::deviceMemory == `VK_NULL_HANDLE`.
+
+To create an allocation that can make some other allocations lost to make room
+for it, use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag. You will
+usually use both flags #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT and
+#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT at the same time.
+
+Warning! Current implementation uses quite naive, brute force algorithm,
+which can make allocation calls that use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT
+flag quite slow. A new, more optimal algorithm and data structure to speed this
+up is planned for the future.
+
+<b>Q: When interleaving creation of new allocations with usage of existing ones,
+how do you make sure that an allocation won't become lost while it's used in the
+current frame?</b>
+
+It is ensured because vmaTouchAllocation() / vmaGetAllocationInfo() not only returns allocation
+status/parameters and checks whether it's not lost, but when it's not, it also
+atomically marks it as used in the current frame, which makes it impossible to
+become lost in that frame. It uses lockless algorithm, so it works fast and
+doesn't involve locking any internal mutex.
+
+<b>Q: What if my allocation may still be in use by the GPU when it's rendering a
+previous frame while I already submit new frame on the CPU?</b>
+
+You can make sure that allocations "touched" by vmaTouchAllocation() / vmaGetAllocationInfo() will not
+become lost for a number of additional frames back from the current one by
+specifying this number as VmaAllocatorCreateInfo::frameInUseCount (for default
+memory pool) and VmaPoolCreateInfo::frameInUseCount (for custom pool).
+
+<b>Q: How do you inform the library when new frame starts?</b>
+
+You need to call function vmaSetCurrentFrameIndex().
+
+Example code:
+
+\code
+struct MyBuffer
+{
+ VkBuffer m_Buf = nullptr;
+ VmaAllocation m_Alloc = nullptr;
+
+ // Called when the buffer is really needed in the current frame.
+ void EnsureBuffer();
+};
+
+void MyBuffer::EnsureBuffer()
+{
+ // Buffer has been created.
+ if(m_Buf != VK_NULL_HANDLE)
+ {
+ // Check if its allocation is not lost + mark it as used in current frame.
+ if(vmaTouchAllocation(allocator, m_Alloc))
+ {
+ // It's all OK - safe to use m_Buf.
+ return;
+ }
+ }
+
+ // Buffer not yet exists or lost - destroy and recreate it.
+
+ vmaDestroyBuffer(allocator, m_Buf, m_Alloc);
+
+ VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+ bufCreateInfo.size = 1024;
+ bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+ VmaAllocationCreateInfo allocCreateInfo = {};
+ allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
+ allocCreateInfo.flags = VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT |
+ VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT;
+
+ vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &m_Buf, &m_Alloc, nullptr);
+}
+\endcode
+
+When using lost allocations, you may see some Vulkan validation layer warnings
+about overlapping regions of memory bound to different kinds of buffers and
+images. This is still valid as long as you implement proper handling of lost
+allocations (like in the example above) and don't use them.
+
+You can create an allocation that is already in lost state from the beginning using function
+vmaCreateLostAllocation(). It may be useful if you need a "dummy" allocation that is not null.
+
+You can call function vmaMakePoolAllocationsLost() to set all eligible allocations
+in a specified custom pool to lost state.
+Allocations that have been "touched" in current frame or VmaPoolCreateInfo::frameInUseCount frames back
+cannot become lost.
+
+<b>Q: Can I touch allocation that cannot become lost?</b>
+
+Yes, although it has no visible effect.
+Calls to vmaGetAllocationInfo() and vmaTouchAllocation() update last use frame index
+also for allocations that cannot become lost, but the only way to observe it is to dump
+internal allocator state using vmaBuildStatsString().
+You can use this feature for debugging purposes to explicitly mark allocations that you use
+in current frame and then analyze JSON dump to see for how long each allocation stays unused.
+
+
+\page statistics Statistics
+
+This library contains functions that return information about its internal state,
+especially the amount of memory allocated from Vulkan.
+Please keep in mind that these functions need to traverse all internal data structures
+to gather these information, so they may be quite time-consuming.
+Don't call them too often.
+
+\section statistics_numeric_statistics Numeric statistics
+
+You can query for overall statistics of the allocator using function vmaCalculateStats().
+Information are returned using structure #VmaStats.
+It contains #VmaStatInfo - number of allocated blocks, number of allocations
+(occupied ranges in these blocks), number of unused (free) ranges in these blocks,
+number of bytes used and unused (but still allocated from Vulkan) and other information.
+They are summed across memory heaps, memory types and total for whole allocator.
+
+You can query for statistics of a custom pool using function vmaGetPoolStats().
+Information are returned using structure #VmaPoolStats.
+
+You can query for information about specific allocation using function vmaGetAllocationInfo().
+It fill structure #VmaAllocationInfo.
+
+\section statistics_json_dump JSON dump
+
+You can dump internal state of the allocator to a string in JSON format using function vmaBuildStatsString().
+The result is guaranteed to be correct JSON.
+It uses ANSI encoding.
+Any strings provided by user (see [Allocation names](@ref allocation_names))
+are copied as-is and properly escaped for JSON, so if they use UTF-8, ISO-8859-2 or any other encoding,
+this JSON string can be treated as using this encoding.
+It must be freed using function vmaFreeStatsString().
+
+The format of this JSON string is not part of official documentation of the library,
+but it will not change in backward-incompatible way without increasing library major version number
+and appropriate mention in changelog.
+
+The JSON string contains all the data that can be obtained using vmaCalculateStats().
+It can also contain detailed map of allocated memory blocks and their regions -
+free and occupied by allocations.
+This allows e.g. to visualize the memory or assess fragmentation.
+
+
+\page allocation_annotation Allocation names and user data
+
+\section allocation_user_data Allocation user data
+
+You can annotate allocations with your own information, e.g. for debugging purposes.
+To do that, fill VmaAllocationCreateInfo::pUserData field when creating
+an allocation. It's an opaque `void*` pointer. You can use it e.g. as a pointer,
+some handle, index, key, ordinal number or any other value that would associate
+the allocation with your custom metadata.
+
+\code
+VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+// Fill bufferInfo...
+
+MyBufferMetadata* pMetadata = CreateBufferMetadata();
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
+allocCreateInfo.pUserData = pMetadata;
+
+VkBuffer buffer;
+VmaAllocation allocation;
+vmaCreateBuffer(allocator, &bufferInfo, &allocCreateInfo, &buffer, &allocation, nullptr);
+\endcode
+
+The pointer may be later retrieved as VmaAllocationInfo::pUserData:
+
+\code
+VmaAllocationInfo allocInfo;
+vmaGetAllocationInfo(allocator, allocation, &allocInfo);
+MyBufferMetadata* pMetadata = (MyBufferMetadata*)allocInfo.pUserData;
+\endcode
+
+It can also be changed using function vmaSetAllocationUserData().
+
+Values of (non-zero) allocations' `pUserData` are printed in JSON report created by
+vmaBuildStatsString(), in hexadecimal form.
+
+\section allocation_names Allocation names
+
+There is alternative mode available where `pUserData` pointer is used to point to
+a null-terminated string, giving a name to the allocation. To use this mode,
+set #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT flag in VmaAllocationCreateInfo::flags.
+Then `pUserData` passed as VmaAllocationCreateInfo::pUserData or argument to
+vmaSetAllocationUserData() must be either null or pointer to a null-terminated string.
+The library creates internal copy of the string, so the pointer you pass doesn't need
+to be valid for whole lifetime of the allocation. You can free it after the call.
+
+\code
+VkImageCreateInfo imageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
+// Fill imageInfo...
+
+std::string imageName = "Texture: ";
+imageName += fileName;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
+allocCreateInfo.flags = VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT;
+allocCreateInfo.pUserData = imageName.c_str();
+
+VkImage image;
+VmaAllocation allocation;
+vmaCreateImage(allocator, &imageInfo, &allocCreateInfo, &image, &allocation, nullptr);
+\endcode
+
+The value of `pUserData` pointer of the allocation will be different than the one
+you passed when setting allocation's name - pointing to a buffer managed
+internally that holds copy of the string.
+
+\code
+VmaAllocationInfo allocInfo;
+vmaGetAllocationInfo(allocator, allocation, &allocInfo);
+const char* imageName = (const char*)allocInfo.pUserData;
+printf("Image name: %s\n", imageName);
+\endcode
+
+That string is also printed in JSON report created by vmaBuildStatsString().
+
+
+\page debugging_memory_usage Debugging incorrect memory usage
+
+If you suspect a bug with memory usage, like usage of uninitialized memory or
+memory being overwritten out of bounds of an allocation,
+you can use debug features of this library to verify this.
+
+\section debugging_memory_usage_initialization Memory initialization
+
+If you experience a bug with incorrect and nondeterministic data in your program and you suspect uninitialized memory to be used,
+you can enable automatic memory initialization to verify this.
+To do it, define macro `VMA_DEBUG_INITIALIZE_ALLOCATIONS` to 1.
+
+\code
+#define VMA_DEBUG_INITIALIZE_ALLOCATIONS 1
+#include "vk_mem_alloc.h"
+\endcode
+
+It makes memory of all new allocations initialized to bit pattern `0xDCDCDCDC`.
+Before an allocation is destroyed, its memory is filled with bit pattern `0xEFEFEFEF`.
+Memory is automatically mapped and unmapped if necessary.
+
+If you find these values while debugging your program, good chances are that you incorrectly
+read Vulkan memory that is allocated but not initialized, or already freed, respectively.
+
+Memory initialization works only with memory types that are `HOST_VISIBLE`.
+It works also with dedicated allocations.
+It doesn't work with allocations created with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag,
+as they cannot be mapped.
+
+\section debugging_memory_usage_margins Margins
+
+By default, allocations are laid out in memory blocks next to each other if possible
+(considering required alignment, `bufferImageGranularity`, and `nonCoherentAtomSize`).
+
+![Allocations without margin](../gfx/Margins_1.png)
+
+Define macro `VMA_DEBUG_MARGIN` to some non-zero value (e.g. 16) to enforce specified
+number of bytes as a margin before and after every allocation.
+
+\code
+#define VMA_DEBUG_MARGIN 16
+#include "vk_mem_alloc.h"
+\endcode
+
+![Allocations with margin](../gfx/Margins_2.png)
+
+If your bug goes away after enabling margins, it means it may be caused by memory
+being overwritten outside of allocation boundaries. It is not 100% certain though.
+Change in application behavior may also be caused by different order and distribution
+of allocations across memory blocks after margins are applied.
+
+The margin is applied also before first and after last allocation in a block.
+It may occur only once between two adjacent allocations.
+
+Margins work with all types of memory.
+
+Margin is applied only to allocations made out of memory blocks and not to dedicated
+allocations, which have their own memory block of specific size.
+It is thus not applied to allocations made using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT flag
+or those automatically decided to put into dedicated allocations, e.g. due to its
+large size or recommended by VK_KHR_dedicated_allocation extension.
+Margins are also not active in custom pools created with #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag.
+
+Margins appear in [JSON dump](@ref statistics_json_dump) as part of free space.
+
+Note that enabling margins increases memory usage and fragmentation.
+
+\section debugging_memory_usage_corruption_detection Corruption detection
+
+You can additionally define macro `VMA_DEBUG_DETECT_CORRUPTION` to 1 to enable validation
+of contents of the margins.
+
+\code
+#define VMA_DEBUG_MARGIN 16
+#define VMA_DEBUG_DETECT_CORRUPTION 1
+#include "vk_mem_alloc.h"
+\endcode
+
+When this feature is enabled, number of bytes specified as `VMA_DEBUG_MARGIN`
+(it must be multiply of 4) before and after every allocation is filled with a magic number.
+This idea is also know as "canary".
+Memory is automatically mapped and unmapped if necessary.
+
+This number is validated automatically when the allocation is destroyed.
+If it's not equal to the expected value, `VMA_ASSERT()` is executed.
+It clearly means that either CPU or GPU overwritten the memory outside of boundaries of the allocation,
+which indicates a serious bug.
+
+You can also explicitly request checking margins of all allocations in all memory blocks
+that belong to specified memory types by using function vmaCheckCorruption(),
+or in memory blocks that belong to specified custom pool, by using function
+vmaCheckPoolCorruption().
+
+Margin validation (corruption detection) works only for memory types that are
+`HOST_VISIBLE` and `HOST_COHERENT`.
+
+
+\page record_and_replay Record and replay
+
+\section record_and_replay_introduction Introduction
+
+While using the library, sequence of calls to its functions together with their
+parameters can be recorded to a file and later replayed using standalone player
+application. It can be useful to:
+
+- Test correctness - check if same sequence of calls will not cause crash or
+ failures on a target platform.
+- Gather statistics - see number of allocations, peak memory usage, number of
+ calls etc.
+- Benchmark performance - see how much time it takes to replay the whole
+ sequence.
+
+\section record_and_replay_usage Usage
+
+Recording functionality is disabled by default.
+To enable it, define following macro before every include of this library:
+
+\code
+#define VMA_RECORDING_ENABLED 1
+\endcode
+
+<b>To record sequence of calls to a file:</b> Fill in
+VmaAllocatorCreateInfo::pRecordSettings member while creating #VmaAllocator
+object. File is opened and written during whole lifetime of the allocator.
+
+<b>To replay file:</b> Use VmaReplay - standalone command-line program.
+Precompiled binary can be found in "bin" directory.
+Its source can be found in "src/VmaReplay" directory.
+Its project is generated by Premake.
+Command line syntax is printed when the program is launched without parameters.
+Basic usage:
+
+ VmaReplay.exe MyRecording.csv
+
+<b>Documentation of file format</b> can be found in file: "docs/Recording file format.md".
+It's a human-readable, text file in CSV format (Comma Separated Values).
+
+\section record_and_replay_additional_considerations Additional considerations
+
+- Replaying file that was recorded on a different GPU (with different parameters
+ like `bufferImageGranularity`, `nonCoherentAtomSize`, and especially different
+ set of memory heaps and types) may give different performance and memory usage
+ results, as well as issue some warnings and errors.
+- Current implementation of recording in VMA, as well as VmaReplay application, is
+ coded and tested only on Windows. Inclusion of recording code is driven by
+ `VMA_RECORDING_ENABLED` macro. Support for other platforms should be easy to
+ add. Contributions are welcomed.
+
+
+\page usage_patterns Recommended usage patterns
+
+See also slides from talk:
+[Sawicki, Adam. Advanced Graphics Techniques Tutorial: Memory management in Vulkan and DX12. Game Developers Conference, 2018](https://www.gdcvault.com/play/1025458/Advanced-Graphics-Techniques-Tutorial-New)
+
+
+\section usage_patterns_common_mistakes Common mistakes
+
+<b>Use of CPU_TO_GPU instead of CPU_ONLY memory</b>
+
+#VMA_MEMORY_USAGE_CPU_TO_GPU is recommended only for resources that will be
+mapped and written by the CPU, as well as read directly by the GPU - like some
+buffers or textures updated every frame (dynamic). If you create a staging copy
+of a resource to be written by CPU and then used as a source of transfer to
+another resource placed in the GPU memory, that staging resource should be
+created with #VMA_MEMORY_USAGE_CPU_ONLY. Please read the descriptions of these
+enums carefully for details.
+
+<b>Unnecessary use of custom pools</b>
+
+\ref custom_memory_pools may be useful for special purposes - when you want to
+keep certain type of resources separate e.g. to reserve minimum amount of memory
+for them, limit maximum amount of memory they can occupy, or make some of them
+push out the other through the mechanism of \ref lost_allocations. For most
+resources this is not needed and so it is not recommended to create #VmaPool
+objects and allocations out of them. Allocating from the default pool is sufficient.
+
+\section usage_patterns_simple Simple patterns
+
+\subsection usage_patterns_simple_render_targets Render targets
+
+<b>When:</b>
+Any resources that you frequently write and read on GPU,
+e.g. images used as color attachments (aka "render targets"), depth-stencil attachments,
+images/buffers used as storage image/buffer (aka "Unordered Access View (UAV)").
+
+<b>What to do:</b>
+Create them in video memory that is fastest to access from GPU using
+#VMA_MEMORY_USAGE_GPU_ONLY.
+
+Consider using [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension
+and/or manually creating them as dedicated allocations using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT,
+especially if they are large or if you plan to destroy and recreate them e.g. when
+display resolution changes.
+Prefer to create such resources first and all other GPU resources (like textures and vertex buffers) later.
+
+\subsection usage_patterns_simple_immutable_resources Immutable resources
+
+<b>When:</b>
+Any resources that you fill on CPU only once (aka "immutable") or infrequently
+and then read frequently on GPU,
+e.g. textures, vertex and index buffers, constant buffers that don't change often.
+
+<b>What to do:</b>
+Create them in video memory that is fastest to access from GPU using
+#VMA_MEMORY_USAGE_GPU_ONLY.
+
+To initialize content of such resource, create a CPU-side (aka "staging") copy of it
+in system memory - #VMA_MEMORY_USAGE_CPU_ONLY, map it, fill it,
+and submit a transfer from it to the GPU resource.
+You can keep the staging copy if you need it for another upload transfer in the future.
+If you don't, you can destroy it or reuse this buffer for uploading different resource
+after the transfer finishes.
+
+Prefer to create just buffers in system memory rather than images, even for uploading textures.
+Use `vkCmdCopyBufferToImage()`.
+Dont use images with `VK_IMAGE_TILING_LINEAR`.
+
+\subsection usage_patterns_dynamic_resources Dynamic resources
+
+<b>When:</b>
+Any resources that change frequently (aka "dynamic"), e.g. every frame or every draw call,
+written on CPU, read on GPU.
+
+<b>What to do:</b>
+Create them using #VMA_MEMORY_USAGE_CPU_TO_GPU.
+You can map it and write to it directly on CPU, as well as read from it on GPU.
+
+This is a more complex situation. Different solutions are possible,
+and the best one depends on specific GPU type, but you can use this simple approach for the start.
+Prefer to write to such resource sequentially (e.g. using `memcpy`).
+Don't perform random access or any reads from it on CPU, as it may be very slow.
+
+\subsection usage_patterns_readback Readback
+
+<b>When:</b>
+Resources that contain data written by GPU that you want to read back on CPU,
+e.g. results of some computations.
+
+<b>What to do:</b>
+Create them using #VMA_MEMORY_USAGE_GPU_TO_CPU.
+You can write to them directly on GPU, as well as map and read them on CPU.
+
+\section usage_patterns_advanced Advanced patterns
+
+\subsection usage_patterns_integrated_graphics Detecting integrated graphics
+
+You can support integrated graphics (like Intel HD Graphics, AMD APU) better
+by detecting it in Vulkan.
+To do it, call `vkGetPhysicalDeviceProperties()`, inspect
+`VkPhysicalDeviceProperties::deviceType` and look for `VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU`.
+When you find it, you can assume that memory is unified and all memory types are comparably fast
+to access from GPU, regardless of `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
+
+You can then sum up sizes of all available memory heaps and treat them as useful for
+your GPU resources, instead of only `DEVICE_LOCAL` ones.
+You can also prefer to create your resources in memory types that are `HOST_VISIBLE` to map them
+directly instead of submitting explicit transfer (see below).
+
+\subsection usage_patterns_direct_vs_transfer Direct access versus transfer
+
+For resources that you frequently write on CPU and read on GPU, many solutions are possible:
+
+-# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY,
+ second copy in system memory using #VMA_MEMORY_USAGE_CPU_ONLY and submit explicit tranfer each time.
+-# Create just single copy using #VMA_MEMORY_USAGE_CPU_TO_GPU, map it and fill it on CPU,
+ read it directly on GPU.
+-# Create just single copy using #VMA_MEMORY_USAGE_CPU_ONLY, map it and fill it on CPU,
+ read it directly on GPU.
+
+Which solution is the most efficient depends on your resource and especially on the GPU.
+It is best to measure it and then make the decision.
+Some general recommendations:
+
+- On integrated graphics use (2) or (3) to avoid unnecesary time and memory overhead
+ related to using a second copy and making transfer.
+- For small resources (e.g. constant buffers) use (2).
+ Discrete AMD cards have special 256 MiB pool of video memory that is directly mappable.
+ Even if the resource ends up in system memory, its data may be cached on GPU after first
+ fetch over PCIe bus.
+- For larger resources (e.g. textures), decide between (1) and (2).
+ You may want to differentiate NVIDIA and AMD, e.g. by looking for memory type that is
+ both `DEVICE_LOCAL` and `HOST_VISIBLE`. When you find it, use (2), otherwise use (1).
+
+Similarly, for resources that you frequently write on GPU and read on CPU, multiple
+solutions are possible:
+
+-# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY,
+ second copy in system memory using #VMA_MEMORY_USAGE_GPU_TO_CPU and submit explicit tranfer each time.
+-# Create just single copy using #VMA_MEMORY_USAGE_GPU_TO_CPU, write to it directly on GPU,
+ map it and read it on CPU.
+
+You should take some measurements to decide which option is faster in case of your specific
+resource.
+
+If you don't want to specialize your code for specific types of GPUs, you can still make
+an simple optimization for cases when your resource ends up in mappable memory to use it
+directly in this case instead of creating CPU-side staging copy.
+For details see [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable).
+
+
+\page configuration Configuration
+
+Please check "CONFIGURATION SECTION" in the code to find macros that you can define
+before each include of this file or change directly in this file to provide
+your own implementation of basic facilities like assert, `min()` and `max()` functions,
+mutex, atomic etc.
+The library uses its own implementation of containers by default, but you can switch to using
+STL containers instead.
+
+For example, define `VMA_ASSERT(expr)` before including the library to provide
+custom implementation of the assertion, compatible with your project.
+By default it is defined to standard C `assert(expr)` in `_DEBUG` configuration
+and empty otherwise.
+
+\section config_Vulkan_functions Pointers to Vulkan functions
+
+The library uses Vulkan functions straight from the `vulkan.h` header by default.
+If you want to provide your own pointers to these functions, e.g. fetched using
+`vkGetInstanceProcAddr()` and `vkGetDeviceProcAddr()`:
+
+-# Define `VMA_STATIC_VULKAN_FUNCTIONS 0`.
+-# Provide valid pointers through VmaAllocatorCreateInfo::pVulkanFunctions.
+
+\section custom_memory_allocator Custom host memory allocator
+
+If you use custom allocator for CPU memory rather than default operator `new`
+and `delete` from C++, you can make this library using your allocator as well
+by filling optional member VmaAllocatorCreateInfo::pAllocationCallbacks. These
+functions will be passed to Vulkan, as well as used by the library itself to
+make any CPU-side allocations.
+
+\section allocation_callbacks Device memory allocation callbacks
+
+The library makes calls to `vkAllocateMemory()` and `vkFreeMemory()` internally.
+You can setup callbacks to be informed about these calls, e.g. for the purpose
+of gathering some statistics. To do it, fill optional member
+VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
+
+\section heap_memory_limit Device heap memory limit
+
+When device memory of certain heap runs out of free space, new allocations may
+fail (returning error code) or they may succeed, silently pushing some existing
+memory blocks from GPU VRAM to system RAM (which degrades performance). This
+behavior is implementation-dependant - it depends on GPU vendor and graphics
+driver.
+
+On AMD cards it can be controlled while creating Vulkan device object by using
+VK_AMD_memory_overallocation_behavior extension, if available.
+
+Alternatively, if you want to test how your program behaves with limited amount of Vulkan device
+memory available without switching your graphics card to one that really has
+smaller VRAM, you can use a feature of this library intended for this purpose.
+To do it, fill optional member VmaAllocatorCreateInfo::pHeapSizeLimit.
+
+
+
+\page vk_khr_dedicated_allocation VK_KHR_dedicated_allocation
+
+VK_KHR_dedicated_allocation is a Vulkan extension which can be used to improve
+performance on some GPUs. It augments Vulkan API with possibility to query
+driver whether it prefers particular buffer or image to have its own, dedicated
+allocation (separate `VkDeviceMemory` block) for better efficiency - to be able
+to do some internal optimizations.
+
+The extension is supported by this library. It will be used automatically when
+enabled. To enable it:
+
+1 . When creating Vulkan device, check if following 2 device extensions are
+supported (call `vkEnumerateDeviceExtensionProperties()`).
+If yes, enable them (fill `VkDeviceCreateInfo::ppEnabledExtensionNames`).
+
+- VK_KHR_get_memory_requirements2
+- VK_KHR_dedicated_allocation
+
+If you enabled these extensions:
+
+2 . Use #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag when creating
+your #VmaAllocator`to inform the library that you enabled required extensions
+and you want the library to use them.
+
+\code
+allocatorInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT;
+
+vmaCreateAllocator(&allocatorInfo, &allocator);
+\endcode
+
+That's all. The extension will be automatically used whenever you create a
+buffer using vmaCreateBuffer() or image using vmaCreateImage().
+
+When using the extension together with Vulkan Validation Layer, you will receive
+warnings like this:
+
+ vkBindBufferMemory(): Binding memory to buffer 0x33 but vkGetBufferMemoryRequirements() has not been called on that buffer.
+
+It is OK, you should just ignore it. It happens because you use function
+`vkGetBufferMemoryRequirements2KHR()` instead of standard
+`vkGetBufferMemoryRequirements()`, while the validation layer seems to be
+unaware of it.
+
+To learn more about this extension, see:
+
+- [VK_KHR_dedicated_allocation in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.0-extensions/html/vkspec.html#VK_KHR_dedicated_allocation)
+- [VK_KHR_dedicated_allocation unofficial manual](http://asawicki.info/articles/VK_KHR_dedicated_allocation.php5)
+
+
+
+\page general_considerations General considerations
+
+\section general_considerations_thread_safety Thread safety
+
+- The library has no global state, so separate #VmaAllocator objects can be used
+ independently.
+ There should be no need to create multiple such objects though - one per `VkDevice` is enough.
+- By default, all calls to functions that take #VmaAllocator as first parameter
+ are safe to call from multiple threads simultaneously because they are
+ synchronized internally when needed.
+- When the allocator is created with #VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT
+ flag, calls to functions that take such #VmaAllocator object must be
+ synchronized externally.
+- Access to a #VmaAllocation object must be externally synchronized. For example,
+ you must not call vmaGetAllocationInfo() and vmaMapMemory() from different
+ threads at the same time if you pass the same #VmaAllocation object to these
+ functions.
+
+\section general_considerations_validation_layer_warnings Validation layer warnings
+
+When using this library, you can meet following types of warnings issued by
+Vulkan validation layer. They don't necessarily indicate a bug, so you may need
+to just ignore them.
+
+- *vkBindBufferMemory(): Binding memory to buffer 0xeb8e4 but vkGetBufferMemoryRequirements() has not been called on that buffer.*
+ - It happens when VK_KHR_dedicated_allocation extension is enabled.
+ `vkGetBufferMemoryRequirements2KHR` function is used instead, while validation layer seems to be unaware of it.
+- *Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.*
+ - It happens when you map a buffer or image, because the library maps entire
+ `VkDeviceMemory` block, where different types of images and buffers may end
+ up together, especially on GPUs with unified memory like Intel.
+- *Non-linear image 0xebc91 is aliased with linear buffer 0xeb8e4 which may indicate a bug.*
+ - It happens when you use lost allocations, and a new image or buffer is
+ created in place of an existing object that bacame lost.
+ - It may happen also when you use [defragmentation](@ref defragmentation).
+
+\section general_considerations_allocation_algorithm Allocation algorithm
+
+The library uses following algorithm for allocation, in order:
+
+-# Try to find free range of memory in existing blocks.
+-# If failed, try to create a new block of `VkDeviceMemory`, with preferred block size.
+-# If failed, try to create such block with size/2, size/4, size/8.
+-# If failed and #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag was
+ specified, try to find space in existing blocks, possilby making some other
+ allocations lost.
+-# If failed, try to allocate separate `VkDeviceMemory` for this allocation,
+ just like when you use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
+-# If failed, choose other memory type that meets the requirements specified in
+ VmaAllocationCreateInfo and go to point 1.
+-# If failed, return `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
+
+\section general_considerations_features_not_supported Features not supported
+
+Features deliberately excluded from the scope of this library:
+
+- Data transfer. Uploading (straming) and downloading data of buffers and images
+ between CPU and GPU memory and related synchronization is responsibility of the user.
+ Defining some "texture" object that would automatically stream its data from a
+ staging copy in CPU memory to GPU memory would rather be a feature of another,
+ higher-level library implemented on top of VMA.
+- Allocations for imported/exported external memory. They tend to require
+ explicit memory type index and dedicated allocation anyway, so they don't
+ interact with main features of this library. Such special purpose allocations
+ should be made manually, using `vkCreateBuffer()` and `vkAllocateMemory()`.
+- Recreation of buffers and images. Although the library has functions for
+ buffer and image creation (vmaCreateBuffer(), vmaCreateImage()), you need to
+ recreate these objects yourself after defragmentation. That's because the big
+ structures `VkBufferCreateInfo`, `VkImageCreateInfo` are not stored in
+ #VmaAllocation object.
+- Handling CPU memory allocation failures. When dynamically creating small C++
+ objects in CPU memory (not Vulkan memory), allocation failures are not checked
+ and handled gracefully, because that would complicate code significantly and
+ is usually not needed in desktop PC applications anyway.
+- Code free of any compiler warnings. Maintaining the library to compile and
+ work correctly on so many different platforms is hard enough. Being free of
+ any warnings, on any version of any compiler, is simply not feasible.
+- This is a C++ library with C interface.
+ Bindings or ports to any other programming languages are welcomed as external projects and
+ are not going to be included into this repository.
+
+*/
+
+/*
+Define this macro to 0/1 to disable/enable support for recording functionality,
+available through VmaAllocatorCreateInfo::pRecordSettings.
+*/
+#ifndef VMA_RECORDING_ENABLED
+ #define VMA_RECORDING_ENABLED 0
+#endif
+
+#ifndef NOMINMAX
+ #define NOMINMAX // For windows.h
+#endif
+
+#ifndef VULKAN_H_
+ #include <vulkan/vulkan.h>
+#endif
+
+#if VMA_RECORDING_ENABLED
+ #include <windows.h>
+#endif
+
+#if !defined(VMA_DEDICATED_ALLOCATION)
+ #if VK_KHR_get_memory_requirements2 && VK_KHR_dedicated_allocation
+ #define VMA_DEDICATED_ALLOCATION 1
+ #else
+ #define VMA_DEDICATED_ALLOCATION 0
+ #endif
+#endif
+
+#if !defined(VMA_BIND_MEMORY2)
+ #if VK_KHR_bind_memory2
+ #define VMA_BIND_MEMORY2 1
+ #else
+ #define VMA_BIND_MEMORY2 0
+ #endif
+#endif
+
+/** \struct VmaAllocator
+\brief Represents main object of this library initialized.
+
+Fill structure #VmaAllocatorCreateInfo and call function vmaCreateAllocator() to create it.
+Call function vmaDestroyAllocator() to destroy it.
+
+It is recommended to create just one object of this type per `VkDevice` object,
+right after Vulkan is initialized and keep it alive until before Vulkan device is destroyed.
+*/
+VK_DEFINE_HANDLE(VmaAllocator)
+
+/// Callback function called after successful vkAllocateMemory.
+typedef void (VKAPI_PTR *PFN_vmaAllocateDeviceMemoryFunction)(
+ VmaAllocator allocator,
+ uint32_t memoryType,
+ VkDeviceMemory memory,
+ VkDeviceSize size);
+/// Callback function called before vkFreeMemory.
+typedef void (VKAPI_PTR *PFN_vmaFreeDeviceMemoryFunction)(
+ VmaAllocator allocator,
+ uint32_t memoryType,
+ VkDeviceMemory memory,
+ VkDeviceSize size);
+
+/** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`.
+
+Provided for informative purpose, e.g. to gather statistics about number of
+allocations or total amount of memory allocated in Vulkan.
+
+Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
+*/
+typedef struct VmaDeviceMemoryCallbacks {
+ /// Optional, can be null.
+ PFN_vmaAllocateDeviceMemoryFunction pfnAllocate;
+ /// Optional, can be null.
+ PFN_vmaFreeDeviceMemoryFunction pfnFree;
+} VmaDeviceMemoryCallbacks;
+
+/// Flags for created #VmaAllocator.
+typedef enum VmaAllocatorCreateFlagBits {
+ /** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you.
+
+ Using this flag may increase performance because internal mutexes are not used.
+ */
+ VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001,
+ /** \brief Enables usage of VK_KHR_dedicated_allocation extension.
+
+ Using this extenion will automatically allocate dedicated blocks of memory for
+ some buffers and images instead of suballocating place for them out of bigger
+ memory blocks (as if you explicitly used #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT
+ flag) when it is recommended by the driver. It may improve performance on some
+ GPUs.
+
+ You may set this flag only if you found out that following device extensions are
+ supported, you enabled them while creating Vulkan device passed as
+ VmaAllocatorCreateInfo::device, and you want them to be used internally by this
+ library:
+
+ - VK_KHR_get_memory_requirements2
+ - VK_KHR_dedicated_allocation
+
+ When this flag is set, you can experience following warnings reported by Vulkan
+ validation layer. You can ignore them.
+
+ > vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer.
+ */
+ VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002,
+ /**
+ Enables usage of VK_KHR_bind_memory2 extension.
+
+ You may set this flag only if you found out that this device extension is supported,
+ you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
+ and you want it to be used internally by this library.
+
+ The extension provides functions `vkBindBufferMemory2KHR` and `vkBindImageMemory2KHR`,
+ which allow to pass a chain of `pNext` structures while binding.
+ This flag is required if you use `pNext` parameter in vmaBindBufferMemory2() or vmaBindImageMemory2().
+ */
+ VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT = 0x00000004,
+
+ VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
+} VmaAllocatorCreateFlagBits;
+typedef VkFlags VmaAllocatorCreateFlags;
+
+/** \brief Pointers to some Vulkan functions - a subset used by the library.
+
+Used in VmaAllocatorCreateInfo::pVulkanFunctions.
+*/
+typedef struct VmaVulkanFunctions {
+ PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties;
+ PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties;
+ PFN_vkAllocateMemory vkAllocateMemory;
+ PFN_vkFreeMemory vkFreeMemory;
+ PFN_vkMapMemory vkMapMemory;
+ PFN_vkUnmapMemory vkUnmapMemory;
+ PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges;
+ PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges;
+ PFN_vkBindBufferMemory vkBindBufferMemory;
+ PFN_vkBindImageMemory vkBindImageMemory;
+ PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements;
+ PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements;
+ PFN_vkCreateBuffer vkCreateBuffer;
+ PFN_vkDestroyBuffer vkDestroyBuffer;
+ PFN_vkCreateImage vkCreateImage;
+ PFN_vkDestroyImage vkDestroyImage;
+ PFN_vkCmdCopyBuffer vkCmdCopyBuffer;
+#if VMA_DEDICATED_ALLOCATION
+ PFN_vkGetBufferMemoryRequirements2KHR vkGetBufferMemoryRequirements2KHR;
+ PFN_vkGetImageMemoryRequirements2KHR vkGetImageMemoryRequirements2KHR;
+#endif
+#if VMA_BIND_MEMORY2
+ PFN_vkBindBufferMemory2KHR vkBindBufferMemory2KHR;
+ PFN_vkBindImageMemory2KHR vkBindImageMemory2KHR;
+#endif
+} VmaVulkanFunctions;
+
+/// Flags to be used in VmaRecordSettings::flags.
+typedef enum VmaRecordFlagBits {
+ /** \brief Enables flush after recording every function call.
+
+ Enable it if you expect your application to crash, which may leave recording file truncated.
+ It may degrade performance though.
+ */
+ VMA_RECORD_FLUSH_AFTER_CALL_BIT = 0x00000001,
+
+ VMA_RECORD_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
+} VmaRecordFlagBits;
+typedef VkFlags VmaRecordFlags;
+
+/// Parameters for recording calls to VMA functions. To be used in VmaAllocatorCreateInfo::pRecordSettings.
+typedef struct VmaRecordSettings
+{
+ /// Flags for recording. Use #VmaRecordFlagBits enum.
+ VmaRecordFlags flags;
+ /** \brief Path to the file that should be written by the recording.
+
+ Suggested extension: "csv".
+ If the file already exists, it will be overwritten.
+ It will be opened for the whole time #VmaAllocator object is alive.
+ If opening this file fails, creation of the whole allocator object fails.
+ */
+ const char* pFilePath;
+} VmaRecordSettings;
+
+/// Description of a Allocator to be created.
+typedef struct VmaAllocatorCreateInfo
+{
+ /// Flags for created allocator. Use #VmaAllocatorCreateFlagBits enum.
+ VmaAllocatorCreateFlags flags;
+ /// Vulkan physical device.
+ /** It must be valid throughout whole lifetime of created allocator. */
+ VkPhysicalDevice physicalDevice;
+ /// Vulkan device.
+ /** It must be valid throughout whole lifetime of created allocator. */
+ VkDevice device;
+ /// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps > 1 GiB. Optional.
+ /** Set to 0 to use default, which is currently 256 MiB. */
+ VkDeviceSize preferredLargeHeapBlockSize;
+ /// Custom CPU memory allocation callbacks. Optional.
+ /** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */
+ const VkAllocationCallbacks* pAllocationCallbacks;
+ /// Informative callbacks for `vkAllocateMemory`, `vkFreeMemory`. Optional.
+ /** Optional, can be null. */
+ const VmaDeviceMemoryCallbacks* pDeviceMemoryCallbacks;
+ /** \brief Maximum number of additional frames that are in use at the same time as current frame.
+
+ This value is used only when you make allocations with
+ VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become
+ lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount.
+
+ For example, if you double-buffer your command buffers, so resources used for
+ rendering in previous frame may still be in use by the GPU at the moment you
+ allocate resources needed for the current frame, set this value to 1.
+
+ If you want to allow any allocations other than used in the current frame to
+ become lost, set this value to 0.
+ */
+ uint32_t frameInUseCount;
+ /** \brief Either null or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap.
+
+ If not NULL, it must be a pointer to an array of
+ `VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on
+ maximum number of bytes that can be allocated out of particular Vulkan memory
+ heap.
+
+ Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that
+ heap. This is also the default in case of `pHeapSizeLimit` = NULL.
+
+ If there is a limit defined for a heap:
+
+ - If user tries to allocate more memory from that heap using this allocator,
+ the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
+ - If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the
+ value of this limit will be reported instead when using vmaGetMemoryProperties().
+
+ Warning! Using this feature may not be equivalent to installing a GPU with
+ smaller amount of memory, because graphics driver doesn't necessary fail new
+ allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is
+ exceeded. It may return success and just silently migrate some device memory
+ blocks to system RAM. This driver behavior can also be controlled using
+ VK_AMD_memory_overallocation_behavior extension.
+ */
+ const VkDeviceSize* pHeapSizeLimit;
+ /** \brief Pointers to Vulkan functions. Can be null if you leave define `VMA_STATIC_VULKAN_FUNCTIONS 1`.
+
+ If you leave define `VMA_STATIC_VULKAN_FUNCTIONS 1` in configuration section,
+ you can pass null as this member, because the library will fetch pointers to
+ Vulkan functions internally in a static way, like:
+
+ vulkanFunctions.vkAllocateMemory = &vkAllocateMemory;
+
+ Fill this member if you want to provide your own pointers to Vulkan functions,
+ e.g. fetched using `vkGetInstanceProcAddr()` and `vkGetDeviceProcAddr()`.
+ */
+ const VmaVulkanFunctions* pVulkanFunctions;
+ /** \brief Parameters for recording of VMA calls. Can be null.
+
+ If not null, it enables recording of calls to VMA functions to a file.
+ If support for recording is not enabled using `VMA_RECORDING_ENABLED` macro,
+ creation of the allocator object fails with `VK_ERROR_FEATURE_NOT_PRESENT`.
+ */
+ const VmaRecordSettings* pRecordSettings;
+} VmaAllocatorCreateInfo;
+
+/// Creates Allocator object.
+VkResult vmaCreateAllocator(
+ const VmaAllocatorCreateInfo* pCreateInfo,
+ VmaAllocator* pAllocator);
+
+/// Destroys allocator object.
+void vmaDestroyAllocator(
+ VmaAllocator allocator);
+
+/**
+PhysicalDeviceProperties are fetched from physicalDevice by the allocator.
+You can access it here, without fetching it again on your own.
+*/
+void vmaGetPhysicalDeviceProperties(
+ VmaAllocator allocator,
+ const VkPhysicalDeviceProperties** ppPhysicalDeviceProperties);
+
+/**
+PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator.
+You can access it here, without fetching it again on your own.
+*/
+void vmaGetMemoryProperties(
+ VmaAllocator allocator,
+ const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties);
+
+/**
+\brief Given Memory Type Index, returns Property Flags of this memory type.
+
+This is just a convenience function. Same information can be obtained using
+vmaGetMemoryProperties().
+*/
+void vmaGetMemoryTypeProperties(
+ VmaAllocator allocator,
+ uint32_t memoryTypeIndex,
+ VkMemoryPropertyFlags* pFlags);
+
+/** \brief Sets index of the current frame.
+
+This function must be used if you make allocations with
+#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT and
+#VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flags to inform the allocator
+when a new frame begins. Allocations queried using vmaGetAllocationInfo() cannot
+become lost in the current frame.
+*/
+void vmaSetCurrentFrameIndex(
+ VmaAllocator allocator,
+ uint32_t frameIndex);
+
+/** \brief Calculated statistics of memory usage in entire allocator.
+*/
+typedef struct VmaStatInfo
+{
+ /// Number of `VkDeviceMemory` Vulkan memory blocks allocated.
+ uint32_t blockCount;
+ /// Number of #VmaAllocation allocation objects allocated.
+ uint32_t allocationCount;
+ /// Number of free ranges of memory between allocations.
+ uint32_t unusedRangeCount;
+ /// Total number of bytes occupied by all allocations.
+ VkDeviceSize usedBytes;
+ /// Total number of bytes occupied by unused ranges.
+ VkDeviceSize unusedBytes;
+ VkDeviceSize allocationSizeMin, allocationSizeAvg, allocationSizeMax;
+ VkDeviceSize unusedRangeSizeMin, unusedRangeSizeAvg, unusedRangeSizeMax;
+} VmaStatInfo;
+
+/// General statistics from current state of Allocator.
+typedef struct VmaStats
+{
+ VmaStatInfo memoryType[VK_MAX_MEMORY_TYPES];
+ VmaStatInfo memoryHeap[VK_MAX_MEMORY_HEAPS];
+ VmaStatInfo total;
+} VmaStats;
+
+/// Retrieves statistics from current state of the Allocator.
+void vmaCalculateStats(
+ VmaAllocator allocator,
+ VmaStats* pStats);
+
+#ifndef VMA_STATS_STRING_ENABLED
+#define VMA_STATS_STRING_ENABLED 1
+#endif
+
+#if VMA_STATS_STRING_ENABLED
+
+/// Builds and returns statistics as string in JSON format.
+/** @param[out] ppStatsString Must be freed using vmaFreeStatsString() function.
+*/
+void vmaBuildStatsString(
+ VmaAllocator allocator,
+ char** ppStatsString,
+ VkBool32 detailedMap);
+
+void vmaFreeStatsString(
+ VmaAllocator allocator,
+ char* pStatsString);
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+/** \struct VmaPool
+\brief Represents custom memory pool
+
+Fill structure VmaPoolCreateInfo and call function vmaCreatePool() to create it.
+Call function vmaDestroyPool() to destroy it.
+
+For more information see [Custom memory pools](@ref choosing_memory_type_custom_memory_pools).
+*/
+VK_DEFINE_HANDLE(VmaPool)
+
+typedef enum VmaMemoryUsage
+{
+ /** No intended memory usage specified.
+ Use other members of VmaAllocationCreateInfo to specify your requirements.
+ */
+ VMA_MEMORY_USAGE_UNKNOWN = 0,
+ /** Memory will be used on device only, so fast access from the device is preferred.
+ It usually means device-local GPU (video) memory.
+ No need to be mappable on host.
+ It is roughly equivalent of `D3D12_HEAP_TYPE_DEFAULT`.
+
+ Usage:
+
+ - Resources written and read by device, e.g. images used as attachments.
+ - Resources transferred from host once (immutable) or infrequently and read by
+ device multiple times, e.g. textures to be sampled, vertex buffers, uniform
+ (constant) buffers, and majority of other types of resources used on GPU.
+
+ Allocation may still end up in `HOST_VISIBLE` memory on some implementations.
+ In such case, you are free to map it.
+ You can use #VMA_ALLOCATION_CREATE_MAPPED_BIT with this usage type.
+ */
+ VMA_MEMORY_USAGE_GPU_ONLY = 1,
+ /** Memory will be mappable on host.
+ It usually means CPU (system) memory.
+ Guarantees to be `HOST_VISIBLE` and `HOST_COHERENT`.
+ CPU access is typically uncached. Writes may be write-combined.
+ Resources created in this pool may still be accessible to the device, but access to them can be slow.
+ It is roughly equivalent of `D3D12_HEAP_TYPE_UPLOAD`.
+
+ Usage: Staging copy of resources used as transfer source.
+ */
+ VMA_MEMORY_USAGE_CPU_ONLY = 2,
+ /**
+ Memory that is both mappable on host (guarantees to be `HOST_VISIBLE`) and preferably fast to access by GPU.
+ CPU access is typically uncached. Writes may be write-combined.
+
+ Usage: Resources written frequently by host (dynamic), read by device. E.g. textures, vertex buffers, uniform buffers updated every frame or every draw call.
+ */
+ VMA_MEMORY_USAGE_CPU_TO_GPU = 3,
+ /** Memory mappable on host (guarantees to be `HOST_VISIBLE`) and cached.
+ It is roughly equivalent of `D3D12_HEAP_TYPE_READBACK`.
+
+ Usage:
+
+ - Resources written by device, read by host - results of some computations, e.g. screen capture, average scene luminance for HDR tone mapping.
+ - Any resources read or accessed randomly on host, e.g. CPU-side copy of vertex buffer used as source of transfer, but also used for collision detection.
+ */
+ VMA_MEMORY_USAGE_GPU_TO_CPU = 4,
+ VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF
+} VmaMemoryUsage;
+
+/// Flags to be passed as VmaAllocationCreateInfo::flags.
+typedef enum VmaAllocationCreateFlagBits {
+ /** \brief Set this flag if the allocation should have its own memory block.
+
+ Use it for special, big resources, like fullscreen images used as attachments.
+
+ You should not use this flag if VmaAllocationCreateInfo::pool is not null.
+ */
+ VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001,
+
+ /** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block.
+
+ If new allocation cannot be placed in any of the existing blocks, allocation
+ fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error.
+
+ You should not use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT and
+ #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT at the same time. It makes no sense.
+
+ If VmaAllocationCreateInfo::pool is not null, this flag is implied and ignored. */
+ VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002,
+ /** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it.
+
+ Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData.
+
+ Is it valid to use this flag for allocation made from memory type that is not
+ `HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is
+ useful if you need an allocation that is efficient to use on GPU
+ (`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that
+ support it (e.g. Intel GPU).
+
+ You should not use this flag together with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT.
+ */
+ VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004,
+ /** Allocation created with this flag can become lost as a result of another
+ allocation with #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag, so you
+ must check it before use.
+
+ To check if allocation is not lost, call vmaGetAllocationInfo() and check if
+ VmaAllocationInfo::deviceMemory is not `VK_NULL_HANDLE`.
+
+ For details about supporting lost allocations, see Lost Allocations
+ chapter of User Guide on Main Page.
+
+ You should not use this flag together with #VMA_ALLOCATION_CREATE_MAPPED_BIT.
+ */
+ VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT = 0x00000008,
+ /** While creating allocation using this flag, other allocations that were
+ created with flag #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT can become lost.
+
+ For details about supporting lost allocations, see Lost Allocations
+ chapter of User Guide on Main Page.
+ */
+ VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT = 0x00000010,
+ /** Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a
+ null-terminated string. Instead of copying pointer value, a local copy of the
+ string is made and stored in allocation's `pUserData`. The string is automatically
+ freed together with the allocation. It is also used in vmaBuildStatsString().
+ */
+ VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020,
+ /** Allocation will be created from upper stack in a double stack pool.
+
+ This flag is only allowed for custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT flag.
+ */
+ VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = 0x00000040,
+ /** Create both buffer/image and allocation, but don't bind them together.
+ It is useful when you want to bind yourself to do some more advanced binding, e.g. using some extensions.
+ The flag is meaningful only with functions that bind by default: vmaCreateBuffer(), vmaCreateImage().
+ Otherwise it is ignored.
+ */
+ VMA_ALLOCATION_CREATE_DONT_BIND_BIT = 0x00000080,
+
+ /** Allocation strategy that chooses smallest possible free range for the
+ allocation.
+ */
+ VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT = 0x00010000,
+ /** Allocation strategy that chooses biggest possible free range for the
+ allocation.
+ */
+ VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT = 0x00020000,
+ /** Allocation strategy that chooses first suitable free range for the
+ allocation.
+
+ "First" doesn't necessarily means the one with smallest offset in memory,
+ but rather the one that is easiest and fastest to find.
+ */
+ VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT = 0x00040000,
+
+ /** Allocation strategy that tries to minimize memory usage.
+ */
+ VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT,
+ /** Allocation strategy that tries to minimize allocation time.
+ */
+ VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT,
+ /** Allocation strategy that tries to minimize memory fragmentation.
+ */
+ VMA_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT = VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT,
+
+ /** A bit mask to extract only `STRATEGY` bits from entire set of flags.
+ */
+ VMA_ALLOCATION_CREATE_STRATEGY_MASK =
+ VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT |
+ VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT |
+ VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT,
+
+ VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
+} VmaAllocationCreateFlagBits;
+typedef VkFlags VmaAllocationCreateFlags;
+
+typedef struct VmaAllocationCreateInfo
+{
+ /// Use #VmaAllocationCreateFlagBits enum.
+ VmaAllocationCreateFlags flags;
+ /** \brief Intended usage of memory.
+
+ You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n
+ If `pool` is not null, this member is ignored.
+ */
+ VmaMemoryUsage usage;
+ /** \brief Flags that must be set in a Memory Type chosen for an allocation.
+
+ Leave 0 if you specify memory requirements in other way. \n
+ If `pool` is not null, this member is ignored.*/
+ VkMemoryPropertyFlags requiredFlags;
+ /** \brief Flags that preferably should be set in a memory type chosen for an allocation.
+
+ Set to 0 if no additional flags are prefered. \n
+ If `pool` is not null, this member is ignored. */
+ VkMemoryPropertyFlags preferredFlags;
+ /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation.
+
+ Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if
+ it meets other requirements specified by this structure, with no further
+ restrictions on memory type index. \n
+ If `pool` is not null, this member is ignored.
+ */
+ uint32_t memoryTypeBits;
+ /** \brief Pool that this allocation should be created in.
+
+ Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members:
+ `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored.
+ */
+ VmaPool pool;
+ /** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData().
+
+ If #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is used, it must be either
+ null or pointer to a null-terminated string. The string will be then copied to
+ internal buffer, so it doesn't need to be valid after allocation call.
+ */
+ void* pUserData;
+} VmaAllocationCreateInfo;
+
+/**
+\brief Helps to find memoryTypeIndex, given memoryTypeBits and VmaAllocationCreateInfo.
+
+This algorithm tries to find a memory type that:
+
+- Is allowed by memoryTypeBits.
+- Contains all the flags from pAllocationCreateInfo->requiredFlags.
+- Matches intended usage.
+- Has as many flags from pAllocationCreateInfo->preferredFlags as possible.
+
+\return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result
+from this function or any other allocating function probably means that your
+device doesn't support any memory type with requested features for the specific
+type of resource you want to use it for. Please check parameters of your
+resource, like image layout (OPTIMAL versus LINEAR) or mip level count.
+*/
+VkResult vmaFindMemoryTypeIndex(
+ VmaAllocator allocator,
+ uint32_t memoryTypeBits,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ uint32_t* pMemoryTypeIndex);
+
+/**
+\brief Helps to find memoryTypeIndex, given VkBufferCreateInfo and VmaAllocationCreateInfo.
+
+It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.
+It internally creates a temporary, dummy buffer that never has memory bound.
+It is just a convenience function, equivalent to calling:
+
+- `vkCreateBuffer`
+- `vkGetBufferMemoryRequirements`
+- `vmaFindMemoryTypeIndex`
+- `vkDestroyBuffer`
+*/
+VkResult vmaFindMemoryTypeIndexForBufferInfo(
+ VmaAllocator allocator,
+ const VkBufferCreateInfo* pBufferCreateInfo,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ uint32_t* pMemoryTypeIndex);
+
+/**
+\brief Helps to find memoryTypeIndex, given VkImageCreateInfo and VmaAllocationCreateInfo.
+
+It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.
+It internally creates a temporary, dummy image that never has memory bound.
+It is just a convenience function, equivalent to calling:
+
+- `vkCreateImage`
+- `vkGetImageMemoryRequirements`
+- `vmaFindMemoryTypeIndex`
+- `vkDestroyImage`
+*/
+VkResult vmaFindMemoryTypeIndexForImageInfo(
+ VmaAllocator allocator,
+ const VkImageCreateInfo* pImageCreateInfo,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ uint32_t* pMemoryTypeIndex);
+
+/// Flags to be passed as VmaPoolCreateInfo::flags.
+typedef enum VmaPoolCreateFlagBits {
+ /** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored.
+
+ This is an optional optimization flag.
+
+ If you always allocate using vmaCreateBuffer(), vmaCreateImage(),
+ vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator
+ knows exact type of your allocations so it can handle Buffer-Image Granularity
+ in the optimal way.
+
+ If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(),
+ exact type of such allocations is not known, so allocator must be conservative
+ in handling Buffer-Image Granularity, which can lead to suboptimal allocation
+ (wasted memory). In that case, if you can make sure you always allocate only
+ buffers and linear images or only optimal images out of this pool, use this flag
+ to make allocator disregard Buffer-Image Granularity and so make allocations
+ faster and more optimal.
+ */
+ VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002,
+
+ /** \brief Enables alternative, linear allocation algorithm in this pool.
+
+ Specify this flag to enable linear allocation algorithm, which always creates
+ new allocations after last one and doesn't reuse space from allocations freed in
+ between. It trades memory consumption for simplified algorithm and data
+ structure, which has better performance and uses less memory for metadata.
+
+ By using this flag, you can achieve behavior of free-at-once, stack,
+ ring buffer, and double stack. For details, see documentation chapter
+ \ref linear_algorithm.
+
+ When using this flag, you must specify VmaPoolCreateInfo::maxBlockCount == 1 (or 0 for default).
+
+ For more details, see [Linear allocation algorithm](@ref linear_algorithm).
+ */
+ VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT = 0x00000004,
+
+ /** \brief Enables alternative, buddy allocation algorithm in this pool.
+
+ It operates on a tree of blocks, each having size that is a power of two and
+ a half of its parent's size. Comparing to default algorithm, this one provides
+ faster allocation and deallocation and decreased external fragmentation,
+ at the expense of more memory wasted (internal fragmentation).
+
+ For more details, see [Buddy allocation algorithm](@ref buddy_algorithm).
+ */
+ VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT = 0x00000008,
+
+ /** Bit mask to extract only `ALGORITHM` bits from entire set of flags.
+ */
+ VMA_POOL_CREATE_ALGORITHM_MASK =
+ VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT |
+ VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT,
+
+ VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
+} VmaPoolCreateFlagBits;
+typedef VkFlags VmaPoolCreateFlags;
+
+/** \brief Describes parameter of created #VmaPool.
+*/
+typedef struct VmaPoolCreateInfo {
+ /** \brief Vulkan memory type index to allocate this pool from.
+ */
+ uint32_t memoryTypeIndex;
+ /** \brief Use combination of #VmaPoolCreateFlagBits.
+ */
+ VmaPoolCreateFlags flags;
+ /** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes. Optional.
+
+ Specify nonzero to set explicit, constant size of memory blocks used by this
+ pool.
+
+ Leave 0 to use default and let the library manage block sizes automatically.
+ Sizes of particular blocks may vary.
+ */
+ VkDeviceSize blockSize;
+ /** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty.
+
+ Set to 0 to have no preallocated blocks and allow the pool be completely empty.
+ */
+ size_t minBlockCount;
+ /** \brief Maximum number of blocks that can be allocated in this pool. Optional.
+
+ Set to 0 to use default, which is `SIZE_MAX`, which means no limit.
+
+ Set to same value as VmaPoolCreateInfo::minBlockCount to have fixed amount of memory allocated
+ throughout whole lifetime of this pool.
+ */
+ size_t maxBlockCount;
+ /** \brief Maximum number of additional frames that are in use at the same time as current frame.
+
+ This value is used only when you make allocations with
+ #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become
+ lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount.
+
+ For example, if you double-buffer your command buffers, so resources used for
+ rendering in previous frame may still be in use by the GPU at the moment you
+ allocate resources needed for the current frame, set this value to 1.
+
+ If you want to allow any allocations other than used in the current frame to
+ become lost, set this value to 0.
+ */
+ uint32_t frameInUseCount;
+} VmaPoolCreateInfo;
+
+/** \brief Describes parameter of existing #VmaPool.
+*/
+typedef struct VmaPoolStats {
+ /** \brief Total amount of `VkDeviceMemory` allocated from Vulkan for this pool, in bytes.
+ */
+ VkDeviceSize size;
+ /** \brief Total number of bytes in the pool not used by any #VmaAllocation.
+ */
+ VkDeviceSize unusedSize;
+ /** \brief Number of #VmaAllocation objects created from this pool that were not destroyed or lost.
+ */
+ size_t allocationCount;
+ /** \brief Number of continuous memory ranges in the pool not used by any #VmaAllocation.
+ */
+ size_t unusedRangeCount;
+ /** \brief Size of the largest continuous free memory region available for new allocation.
+
+ Making a new allocation of that size is not guaranteed to succeed because of
+ possible additional margin required to respect alignment and buffer/image
+ granularity.
+ */
+ VkDeviceSize unusedRangeSizeMax;
+ /** \brief Number of `VkDeviceMemory` blocks allocated for this pool.
+ */
+ size_t blockCount;
+} VmaPoolStats;
+
+/** \brief Allocates Vulkan device memory and creates #VmaPool object.
+
+@param allocator Allocator object.
+@param pCreateInfo Parameters of pool to create.
+@param[out] pPool Handle to created pool.
+*/
+VkResult vmaCreatePool(
+ VmaAllocator allocator,
+ const VmaPoolCreateInfo* pCreateInfo,
+ VmaPool* pPool);
+
+/** \brief Destroys #VmaPool object and frees Vulkan device memory.
+*/
+void vmaDestroyPool(
+ VmaAllocator allocator,
+ VmaPool pool);
+
+/** \brief Retrieves statistics of existing #VmaPool object.
+
+@param allocator Allocator object.
+@param pool Pool object.
+@param[out] pPoolStats Statistics of specified pool.
+*/
+void vmaGetPoolStats(
+ VmaAllocator allocator,
+ VmaPool pool,
+ VmaPoolStats* pPoolStats);
+
+/** \brief Marks all allocations in given pool as lost if they are not used in current frame or VmaPoolCreateInfo::frameInUseCount back from now.
+
+@param allocator Allocator object.
+@param pool Pool.
+@param[out] pLostAllocationCount Number of allocations marked as lost. Optional - pass null if you don't need this information.
+*/
+void vmaMakePoolAllocationsLost(
+ VmaAllocator allocator,
+ VmaPool pool,
+ size_t* pLostAllocationCount);
+
+/** \brief Checks magic number in margins around all allocations in given memory pool in search for corruptions.
+
+Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero,
+`VMA_DEBUG_MARGIN` is defined to nonzero and the pool is created in memory type that is
+`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection).
+
+Possible return values:
+
+- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for specified pool.
+- `VK_SUCCESS` - corruption detection has been performed and succeeded.
+- `VK_ERROR_VALIDATION_FAILED_EXT` - corruption detection has been performed and found memory corruptions around one of the allocations.
+ `VMA_ASSERT` is also fired in that case.
+- Other value: Error returned by Vulkan, e.g. memory mapping failure.
+*/
+VkResult vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool);
+
+/** \struct VmaAllocation
+\brief Represents single memory allocation.
+
+It may be either dedicated block of `VkDeviceMemory` or a specific region of a bigger block of this type
+plus unique offset.
+
+There are multiple ways to create such object.
+You need to fill structure VmaAllocationCreateInfo.
+For more information see [Choosing memory type](@ref choosing_memory_type).
+
+Although the library provides convenience functions that create Vulkan buffer or image,
+allocate memory for it and bind them together,
+binding of the allocation to a buffer or an image is out of scope of the allocation itself.
+Allocation object can exist without buffer/image bound,
+binding can be done manually by the user, and destruction of it can be done
+independently of destruction of the allocation.
+
+The object also remembers its size and some other information.
+To retrieve this information, use function vmaGetAllocationInfo() and inspect
+returned structure VmaAllocationInfo.
+
+Some kinds allocations can be in lost state.
+For more information, see [Lost allocations](@ref lost_allocations).
+*/
+VK_DEFINE_HANDLE(VmaAllocation)
+
+/** \brief Parameters of #VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo().
+*/
+typedef struct VmaAllocationInfo {
+ /** \brief Memory type index that this allocation was allocated from.
+
+ It never changes.
+ */
+ uint32_t memoryType;
+ /** \brief Handle to Vulkan memory object.
+
+ Same memory object can be shared by multiple allocations.
+
+ It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost.
+
+ If the allocation is lost, it is equal to `VK_NULL_HANDLE`.
+ */
+ VkDeviceMemory deviceMemory;
+ /** \brief Offset into deviceMemory object to the beginning of this allocation, in bytes. (deviceMemory, offset) pair is unique to this allocation.
+
+ It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost.
+ */
+ VkDeviceSize offset;
+ /** \brief Size of this allocation, in bytes.
+
+ It never changes, unless allocation is lost.
+ */
+ VkDeviceSize size;
+ /** \brief Pointer to the beginning of this allocation as mapped data.
+
+ If the allocation hasn't been mapped using vmaMapMemory() and hasn't been
+ created with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag, this value null.
+
+ It can change after call to vmaMapMemory(), vmaUnmapMemory().
+ It can also change after call to vmaDefragment() if this allocation is passed to the function.
+ */
+ void* pMappedData;
+ /** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData().
+
+ It can change after call to vmaSetAllocationUserData() for this allocation.
+ */
+ void* pUserData;
+} VmaAllocationInfo;
+
+/** \brief General purpose memory allocation.
+
+@param[out] pAllocation Handle to allocated memory.
+@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
+
+You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages().
+
+It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(),
+vmaCreateBuffer(), vmaCreateImage() instead whenever possible.
+*/
+VkResult vmaAllocateMemory(
+ VmaAllocator allocator,
+ const VkMemoryRequirements* pVkMemoryRequirements,
+ const VmaAllocationCreateInfo* pCreateInfo,
+ VmaAllocation* pAllocation,
+ VmaAllocationInfo* pAllocationInfo);
+
+/** \brief General purpose memory allocation for multiple allocation objects at once.
+
+@param allocator Allocator object.
+@param pVkMemoryRequirements Memory requirements for each allocation.
+@param pCreateInfo Creation parameters for each alloction.
+@param allocationCount Number of allocations to make.
+@param[out] pAllocations Pointer to array that will be filled with handles to created allocations.
+@param[out] pAllocationInfo Optional. Pointer to array that will be filled with parameters of created allocations.
+
+You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages().
+
+Word "pages" is just a suggestion to use this function to allocate pieces of memory needed for sparse binding.
+It is just a general purpose allocation function able to make multiple allocations at once.
+It may be internally optimized to be more efficient than calling vmaAllocateMemory() `allocationCount` times.
+
+All allocations are made using same parameters. All of them are created out of the same memory pool and type.
+If any allocation fails, all allocations already made within this function call are also freed, so that when
+returned result is not `VK_SUCCESS`, `pAllocation` array is always entirely filled with `VK_NULL_HANDLE`.
+*/
+VkResult vmaAllocateMemoryPages(
+ VmaAllocator allocator,
+ const VkMemoryRequirements* pVkMemoryRequirements,
+ const VmaAllocationCreateInfo* pCreateInfo,
+ size_t allocationCount,
+ VmaAllocation* pAllocations,
+ VmaAllocationInfo* pAllocationInfo);
+
+/**
+@param[out] pAllocation Handle to allocated memory.
+@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
+
+You should free the memory using vmaFreeMemory().
+*/
+VkResult vmaAllocateMemoryForBuffer(
+ VmaAllocator allocator,
+ VkBuffer buffer,
+ const VmaAllocationCreateInfo* pCreateInfo,
+ VmaAllocation* pAllocation,
+ VmaAllocationInfo* pAllocationInfo);
+
+/// Function similar to vmaAllocateMemoryForBuffer().
+VkResult vmaAllocateMemoryForImage(
+ VmaAllocator allocator,
+ VkImage image,
+ const VmaAllocationCreateInfo* pCreateInfo,
+ VmaAllocation* pAllocation,
+ VmaAllocationInfo* pAllocationInfo);
+
+/** \brief Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage().
+
+Passing `VK_NULL_HANDLE` as `allocation` is valid. Such function call is just skipped.
+*/
+void vmaFreeMemory(
+ VmaAllocator allocator,
+ VmaAllocation allocation);
+
+/** \brief Frees memory and destroys multiple allocations.
+
+Word "pages" is just a suggestion to use this function to free pieces of memory used for sparse binding.
+It is just a general purpose function to free memory and destroy allocations made using e.g. vmaAllocateMemory(),
+vmaAllocateMemoryPages() and other functions.
+It may be internally optimized to be more efficient than calling vmaFreeMemory() `allocationCount` times.
+
+Allocations in `pAllocations` array can come from any memory pools and types.
+Passing `VK_NULL_HANDLE` as elements of `pAllocations` array is valid. Such entries are just skipped.
+*/
+void vmaFreeMemoryPages(
+ VmaAllocator allocator,
+ size_t allocationCount,
+ VmaAllocation* pAllocations);
+
+/** \brief Deprecated.
+
+In version 2.2.0 it used to try to change allocation's size without moving or reallocating it.
+In current version it returns `VK_SUCCESS` only if `newSize` equals current allocation's size.
+Otherwise returns `VK_ERROR_OUT_OF_POOL_MEMORY`, indicating that allocation's size could not be changed.
+*/
+VkResult vmaResizeAllocation(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ VkDeviceSize newSize);
+
+/** \brief Returns current information about specified allocation and atomically marks it as used in current frame.
+
+Current paramters of given allocation are returned in `pAllocationInfo`.
+
+This function also atomically "touches" allocation - marks it as used in current frame,
+just like vmaTouchAllocation().
+If the allocation is in lost state, `pAllocationInfo->deviceMemory == VK_NULL_HANDLE`.
+
+Although this function uses atomics and doesn't lock any mutex, so it should be quite efficient,
+you can avoid calling it too often.
+
+- You can retrieve same VmaAllocationInfo structure while creating your resource, from function
+ vmaCreateBuffer(), vmaCreateImage(). You can remember it if you are sure parameters don't change
+ (e.g. due to defragmentation or allocation becoming lost).
+- If you just want to check if allocation is not lost, vmaTouchAllocation() will work faster.
+*/
+void vmaGetAllocationInfo(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ VmaAllocationInfo* pAllocationInfo);
+
+/** \brief Returns `VK_TRUE` if allocation is not lost and atomically marks it as used in current frame.
+
+If the allocation has been created with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag,
+this function returns `VK_TRUE` if it's not in lost state, so it can still be used.
+It then also atomically "touches" the allocation - marks it as used in current frame,
+so that you can be sure it won't become lost in current frame or next `frameInUseCount` frames.
+
+If the allocation is in lost state, the function returns `VK_FALSE`.
+Memory of such allocation, as well as buffer or image bound to it, should not be used.
+Lost allocation and the buffer/image still need to be destroyed.
+
+If the allocation has been created without #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag,
+this function always returns `VK_TRUE`.
+*/
+VkBool32 vmaTouchAllocation(
+ VmaAllocator allocator,
+ VmaAllocation allocation);
+
+/** \brief Sets pUserData in given allocation to new value.
+
+If the allocation was created with VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT,
+pUserData must be either null, or pointer to a null-terminated string. The function
+makes local copy of the string and sets it as allocation's `pUserData`. String
+passed as pUserData doesn't need to be valid for whole lifetime of the allocation -
+you can free it after this call. String previously pointed by allocation's
+pUserData is freed from memory.
+
+If the flag was not used, the value of pointer `pUserData` is just copied to
+allocation's `pUserData`. It is opaque, so you can use it however you want - e.g.
+as a pointer, ordinal number or some handle to you own data.
+*/
+void vmaSetAllocationUserData(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ void* pUserData);
+
+/** \brief Creates new allocation that is in lost state from the beginning.
+
+It can be useful if you need a dummy, non-null allocation.
+
+You still need to destroy created object using vmaFreeMemory().
+
+Returned allocation is not tied to any specific memory pool or memory type and
+not bound to any image or buffer. It has size = 0. It cannot be turned into
+a real, non-empty allocation.
+*/
+void vmaCreateLostAllocation(
+ VmaAllocator allocator,
+ VmaAllocation* pAllocation);
+
+/** \brief Maps memory represented by given allocation and returns pointer to it.
+
+Maps memory represented by given allocation to make it accessible to CPU code.
+When succeeded, `*ppData` contains pointer to first byte of this memory.
+If the allocation is part of bigger `VkDeviceMemory` block, the pointer is
+correctly offseted to the beginning of region assigned to this particular
+allocation.
+
+Mapping is internally reference-counted and synchronized, so despite raw Vulkan
+function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory`
+multiple times simultaneously, it is safe to call this function on allocations
+assigned to the same memory block. Actual Vulkan memory will be mapped on first
+mapping and unmapped on last unmapping.
+
+If the function succeeded, you must call vmaUnmapMemory() to unmap the
+allocation when mapping is no longer needed or before freeing the allocation, at
+the latest.
+
+It also safe to call this function multiple times on the same allocation. You
+must call vmaUnmapMemory() same number of times as you called vmaMapMemory().
+
+It is also safe to call this function on allocation created with
+#VMA_ALLOCATION_CREATE_MAPPED_BIT flag. Its memory stays mapped all the time.
+You must still call vmaUnmapMemory() same number of times as you called
+vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the
+"0-th" mapping made automatically due to #VMA_ALLOCATION_CREATE_MAPPED_BIT flag.
+
+This function fails when used on allocation made in memory type that is not
+`HOST_VISIBLE`.
+
+This function always fails when called for allocation that was created with
+#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocations cannot be
+mapped.
+*/
+VkResult vmaMapMemory(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ void** ppData);
+
+/** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory().
+
+For details, see description of vmaMapMemory().
+*/
+void vmaUnmapMemory(
+ VmaAllocator allocator,
+ VmaAllocation allocation);
+
+/** \brief Flushes memory of given allocation.
+
+Calls `vkFlushMappedMemoryRanges()` for memory associated with given range of given allocation.
+
+- `offset` must be relative to the beginning of allocation.
+- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation.
+- `offset` and `size` don't have to be aligned.
+ They are internally rounded down/up to multiply of `nonCoherentAtomSize`.
+- If `size` is 0, this call is ignored.
+- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`,
+ this call is ignored.
+
+Warning! `offset` and `size` are relative to the contents of given `allocation`.
+If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively.
+Do not pass allocation's offset as `offset`!!!
+*/
+void vmaFlushAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size);
+
+/** \brief Invalidates memory of given allocation.
+
+Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given range of given allocation.
+
+- `offset` must be relative to the beginning of allocation.
+- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation.
+- `offset` and `size` don't have to be aligned.
+ They are internally rounded down/up to multiply of `nonCoherentAtomSize`.
+- If `size` is 0, this call is ignored.
+- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`,
+ this call is ignored.
+
+Warning! `offset` and `size` are relative to the contents of given `allocation`.
+If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively.
+Do not pass allocation's offset as `offset`!!!
+*/
+void vmaInvalidateAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size);
+
+/** \brief Checks magic number in margins around all allocations in given memory types (in both default and custom pools) in search for corruptions.
+
+@param memoryTypeBits Bit mask, where each bit set means that a memory type with that index should be checked.
+
+Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero,
+`VMA_DEBUG_MARGIN` is defined to nonzero and only for memory types that are
+`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection).
+
+Possible return values:
+
+- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for any of specified memory types.
+- `VK_SUCCESS` - corruption detection has been performed and succeeded.
+- `VK_ERROR_VALIDATION_FAILED_EXT` - corruption detection has been performed and found memory corruptions around one of the allocations.
+ `VMA_ASSERT` is also fired in that case.
+- Other value: Error returned by Vulkan, e.g. memory mapping failure.
+*/
+VkResult vmaCheckCorruption(VmaAllocator allocator, uint32_t memoryTypeBits);
+
+/** \struct VmaDefragmentationContext
+\brief Represents Opaque object that represents started defragmentation process.
+
+Fill structure #VmaDefragmentationInfo2 and call function vmaDefragmentationBegin() to create it.
+Call function vmaDefragmentationEnd() to destroy it.
+*/
+VK_DEFINE_HANDLE(VmaDefragmentationContext)
+
+/// Flags to be used in vmaDefragmentationBegin(). None at the moment. Reserved for future use.
+typedef enum VmaDefragmentationFlagBits {
+ VMA_DEFRAGMENTATION_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
+} VmaDefragmentationFlagBits;
+typedef VkFlags VmaDefragmentationFlags;
+
+/** \brief Parameters for defragmentation.
+
+To be used with function vmaDefragmentationBegin().
+*/
+typedef struct VmaDefragmentationInfo2 {
+ /** \brief Reserved for future use. Should be 0.
+ */
+ VmaDefragmentationFlags flags;
+ /** \brief Number of allocations in `pAllocations` array.
+ */
+ uint32_t allocationCount;
+ /** \brief Pointer to array of allocations that can be defragmented.
+
+ The array should have `allocationCount` elements.
+ The array should not contain nulls.
+ Elements in the array should be unique - same allocation cannot occur twice.
+ It is safe to pass allocations that are in the lost state - they are ignored.
+ All allocations not present in this array are considered non-moveable during this defragmentation.
+ */
+ VmaAllocation* pAllocations;
+ /** \brief Optional, output. Pointer to array that will be filled with information whether the allocation at certain index has been changed during defragmentation.
+
+ The array should have `allocationCount` elements.
+ You can pass null if you are not interested in this information.
+ */
+ VkBool32* pAllocationsChanged;
+ /** \brief Numer of pools in `pPools` array.
+ */
+ uint32_t poolCount;
+ /** \brief Either null or pointer to array of pools to be defragmented.
+
+ All the allocations in the specified pools can be moved during defragmentation
+ and there is no way to check if they were really moved as in `pAllocationsChanged`,
+ so you must query all the allocations in all these pools for new `VkDeviceMemory`
+ and offset using vmaGetAllocationInfo() if you might need to recreate buffers
+ and images bound to them.
+
+ The array should have `poolCount` elements.
+ The array should not contain nulls.
+ Elements in the array should be unique - same pool cannot occur twice.
+
+ Using this array is equivalent to specifying all allocations from the pools in `pAllocations`.
+ It might be more efficient.
+ */
+ VmaPool* pPools;
+ /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on CPU side, like `memcpy()`, `memmove()`.
+
+ `VK_WHOLE_SIZE` means no limit.
+ */
+ VkDeviceSize maxCpuBytesToMove;
+ /** \brief Maximum number of allocations that can be moved to a different place using transfers on CPU side, like `memcpy()`, `memmove()`.
+
+ `UINT32_MAX` means no limit.
+ */
+ uint32_t maxCpuAllocationsToMove;
+ /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on GPU side, posted to `commandBuffer`.
+
+ `VK_WHOLE_SIZE` means no limit.
+ */
+ VkDeviceSize maxGpuBytesToMove;
+ /** \brief Maximum number of allocations that can be moved to a different place using transfers on GPU side, posted to `commandBuffer`.
+
+ `UINT32_MAX` means no limit.
+ */
+ uint32_t maxGpuAllocationsToMove;
+ /** \brief Optional. Command buffer where GPU copy commands will be posted.
+
+ If not null, it must be a valid command buffer handle that supports Transfer queue type.
+ It must be in the recording state and outside of a render pass instance.
+ You need to submit it and make sure it finished execution before calling vmaDefragmentationEnd().
+
+ Passing null means that only CPU defragmentation will be performed.
+ */
+ VkCommandBuffer commandBuffer;
+} VmaDefragmentationInfo2;
+
+/** \brief Deprecated. Optional configuration parameters to be passed to function vmaDefragment().
+
+\deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead.
+*/
+typedef struct VmaDefragmentationInfo {
+ /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places.
+
+ Default is `VK_WHOLE_SIZE`, which means no limit.
+ */
+ VkDeviceSize maxBytesToMove;
+ /** \brief Maximum number of allocations that can be moved to different place.
+
+ Default is `UINT32_MAX`, which means no limit.
+ */
+ uint32_t maxAllocationsToMove;
+} VmaDefragmentationInfo;
+
+/** \brief Statistics returned by function vmaDefragment(). */
+typedef struct VmaDefragmentationStats {
+ /// Total number of bytes that have been copied while moving allocations to different places.
+ VkDeviceSize bytesMoved;
+ /// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects.
+ VkDeviceSize bytesFreed;
+ /// Number of allocations that have been moved to different places.
+ uint32_t allocationsMoved;
+ /// Number of empty `VkDeviceMemory` objects that have been released to the system.
+ uint32_t deviceMemoryBlocksFreed;
+} VmaDefragmentationStats;
+
+/** \brief Begins defragmentation process.
+
+@param allocator Allocator object.
+@param pInfo Structure filled with parameters of defragmentation.
+@param[out] pStats Optional. Statistics of defragmentation. You can pass null if you are not interested in this information.
+@param[out] pContext Context object that must be passed to vmaDefragmentationEnd() to finish defragmentation.
+@return `VK_SUCCESS` and `*pContext == null` if defragmentation finished within this function call. `VK_NOT_READY` and `*pContext != null` if defragmentation has been started and you need to call vmaDefragmentationEnd() to finish it. Negative value in case of error.
+
+Use this function instead of old, deprecated vmaDefragment().
+
+Warning! Between the call to vmaDefragmentationBegin() and vmaDefragmentationEnd():
+
+- You should not use any of allocations passed as `pInfo->pAllocations` or
+ any allocations that belong to pools passed as `pInfo->pPools`,
+ including calling vmaGetAllocationInfo(), vmaTouchAllocation(), or access
+ their data.
+- Some mutexes protecting internal data structures may be locked, so trying to
+ make or free any allocations, bind buffers or images, map memory, or launch
+ another simultaneous defragmentation in between may cause stall (when done on
+ another thread) or deadlock (when done on the same thread), unless you are
+ 100% sure that defragmented allocations are in different pools.
+- Information returned via `pStats` and `pInfo->pAllocationsChanged` are undefined.
+ They become valid after call to vmaDefragmentationEnd().
+- If `pInfo->commandBuffer` is not null, you must submit that command buffer
+ and make sure it finished execution before calling vmaDefragmentationEnd().
+
+For more information and important limitations regarding defragmentation, see documentation chapter:
+[Defragmentation](@ref defragmentation).
+*/
+VkResult vmaDefragmentationBegin(
+ VmaAllocator allocator,
+ const VmaDefragmentationInfo2* pInfo,
+ VmaDefragmentationStats* pStats,
+ VmaDefragmentationContext *pContext);
+
+/** \brief Ends defragmentation process.
+
+Use this function to finish defragmentation started by vmaDefragmentationBegin().
+It is safe to pass `context == null`. The function then does nothing.
+*/
+VkResult vmaDefragmentationEnd(
+ VmaAllocator allocator,
+ VmaDefragmentationContext context);
+
+/** \brief Deprecated. Compacts memory by moving allocations.
+
+@param pAllocations Array of allocations that can be moved during this compation.
+@param allocationCount Number of elements in pAllocations and pAllocationsChanged arrays.
+@param[out] pAllocationsChanged Array of boolean values that will indicate whether matching allocation in pAllocations array has been moved. This parameter is optional. Pass null if you don't need this information.
+@param pDefragmentationInfo Configuration parameters. Optional - pass null to use default values.
+@param[out] pDefragmentationStats Statistics returned by the function. Optional - pass null if you don't need this information.
+@return `VK_SUCCESS` if completed, negative error code in case of error.
+
+\deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead.
+
+This function works by moving allocations to different places (different
+`VkDeviceMemory` objects and/or different offsets) in order to optimize memory
+usage. Only allocations that are in `pAllocations` array can be moved. All other
+allocations are considered nonmovable in this call. Basic rules:
+
+- Only allocations made in memory types that have
+ `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` and `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT`
+ flags can be compacted. You may pass other allocations but it makes no sense -
+ these will never be moved.
+- Custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT or
+ #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag are not defragmented. Allocations
+ passed to this function that come from such pools are ignored.
+- Allocations created with #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT or
+ created as dedicated allocations for any other reason are also ignored.
+- Both allocations made with or without #VMA_ALLOCATION_CREATE_MAPPED_BIT
+ flag can be compacted. If not persistently mapped, memory will be mapped
+ temporarily inside this function if needed.
+- You must not pass same #VmaAllocation object multiple times in `pAllocations` array.
+
+The function also frees empty `VkDeviceMemory` blocks.
+
+Warning: This function may be time-consuming, so you shouldn't call it too often
+(like after every resource creation/destruction).
+You can call it on special occasions (like when reloading a game level or
+when you just destroyed a lot of objects). Calling it every frame may be OK, but
+you should measure that on your platform.
+
+For more information, see [Defragmentation](@ref defragmentation) chapter.
+*/
+VkResult vmaDefragment(
+ VmaAllocator allocator,
+ VmaAllocation* pAllocations,
+ size_t allocationCount,
+ VkBool32* pAllocationsChanged,
+ const VmaDefragmentationInfo *pDefragmentationInfo,
+ VmaDefragmentationStats* pDefragmentationStats);
+
+/** \brief Binds buffer to allocation.
+
+Binds specified buffer to region of memory represented by specified allocation.
+Gets `VkDeviceMemory` handle and offset from the allocation.
+If you want to create a buffer, allocate memory for it and bind them together separately,
+you should use this function for binding instead of standard `vkBindBufferMemory()`,
+because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple
+allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously
+(which is illegal in Vulkan).
+
+It is recommended to use function vmaCreateBuffer() instead of this one.
+*/
+VkResult vmaBindBufferMemory(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ VkBuffer buffer);
+
+/** \brief Binds buffer to allocation with additional parameters.
+
+@param allocationLocalOffset Additional offset to be added while binding, relative to the beginnig of the `allocation`. Normally it should be 0.
+@param pNext A chain of structures to be attached to `VkBindBufferMemoryInfoKHR` structure used internally. Normally it should be null.
+
+This function is similar to vmaBindBufferMemory(), but it provides additional parameters.
+
+If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag.
+Otherwise the call fails.
+*/
+VkResult vmaBindBufferMemory2(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ VkDeviceSize allocationLocalOffset,
+ VkBuffer buffer,
+ const void* pNext);
+
+/** \brief Binds image to allocation.
+
+Binds specified image to region of memory represented by specified allocation.
+Gets `VkDeviceMemory` handle and offset from the allocation.
+If you want to create an image, allocate memory for it and bind them together separately,
+you should use this function for binding instead of standard `vkBindImageMemory()`,
+because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple
+allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously
+(which is illegal in Vulkan).
+
+It is recommended to use function vmaCreateImage() instead of this one.
+*/
+VkResult vmaBindImageMemory(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ VkImage image);
+
+/** \brief Binds image to allocation with additional parameters.
+
+@param allocationLocalOffset Additional offset to be added while binding, relative to the beginnig of the `allocation`. Normally it should be 0.
+@param pNext A chain of structures to be attached to `VkBindImageMemoryInfoKHR` structure used internally. Normally it should be null.
+
+This function is similar to vmaBindImageMemory(), but it provides additional parameters.
+
+If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag.
+Otherwise the call fails.
+*/
+VkResult vmaBindImageMemory2(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ VkDeviceSize allocationLocalOffset,
+ VkImage image,
+ const void* pNext);
+
+/**
+@param[out] pBuffer Buffer that was created.
+@param[out] pAllocation Allocation that was created.
+@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
+
+This function automatically:
+
+-# Creates buffer.
+-# Allocates appropriate memory for it.
+-# Binds the buffer with the memory.
+
+If any of these operations fail, buffer and allocation are not created,
+returned value is negative error code, *pBuffer and *pAllocation are null.
+
+If the function succeeded, you must destroy both buffer and allocation when you
+no longer need them using either convenience function vmaDestroyBuffer() or
+separately, using `vkDestroyBuffer()` and vmaFreeMemory().
+
+If VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used,
+VK_KHR_dedicated_allocation extension is used internally to query driver whether
+it requires or prefers the new buffer to have dedicated allocation. If yes,
+and if dedicated allocation is possible (VmaAllocationCreateInfo::pool is null
+and VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated
+allocation for this buffer, just like when using
+VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
+*/
+VkResult vmaCreateBuffer(
+ VmaAllocator allocator,
+ const VkBufferCreateInfo* pBufferCreateInfo,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ VkBuffer* pBuffer,
+ VmaAllocation* pAllocation,
+ VmaAllocationInfo* pAllocationInfo);
+
+/** \brief Destroys Vulkan buffer and frees allocated memory.
+
+This is just a convenience function equivalent to:
+
+\code
+vkDestroyBuffer(device, buffer, allocationCallbacks);
+vmaFreeMemory(allocator, allocation);
+\endcode
+
+It it safe to pass null as buffer and/or allocation.
+*/
+void vmaDestroyBuffer(
+ VmaAllocator allocator,
+ VkBuffer buffer,
+ VmaAllocation allocation);
+
+/// Function similar to vmaCreateBuffer().
+VkResult vmaCreateImage(
+ VmaAllocator allocator,
+ const VkImageCreateInfo* pImageCreateInfo,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ VkImage* pImage,
+ VmaAllocation* pAllocation,
+ VmaAllocationInfo* pAllocationInfo);
+
+/** \brief Destroys Vulkan image and frees allocated memory.
+
+This is just a convenience function equivalent to:
+
+\code
+vkDestroyImage(device, image, allocationCallbacks);
+vmaFreeMemory(allocator, allocation);
+\endcode
+
+It it safe to pass null as image and/or allocation.
+*/
+void vmaDestroyImage(
+ VmaAllocator allocator,
+ VkImage image,
+ VmaAllocation allocation);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif // AMD_VULKAN_MEMORY_ALLOCATOR_H
+
+// For Visual Studio IntelliSense.
+#if defined(__cplusplus) && defined(__INTELLISENSE__)
+#define VMA_IMPLEMENTATION
+#endif
+
+#ifdef VMA_IMPLEMENTATION
+#undef VMA_IMPLEMENTATION
+
+#include <cstdint>
+#include <cstdlib>
+#include <cstring>
+
+/*******************************************************************************
+CONFIGURATION SECTION
+
+Define some of these macros before each #include of this header or change them
+here if you need other then default behavior depending on your environment.
+*/
+
+/*
+Define this macro to 1 to make the library fetch pointers to Vulkan functions
+internally, like:
+
+ vulkanFunctions.vkAllocateMemory = &vkAllocateMemory;
+
+Define to 0 if you are going to provide you own pointers to Vulkan functions via
+VmaAllocatorCreateInfo::pVulkanFunctions.
+*/
+#if !defined(VMA_STATIC_VULKAN_FUNCTIONS) && !defined(VK_NO_PROTOTYPES)
+#define VMA_STATIC_VULKAN_FUNCTIONS 1
+#endif
+
+// Define this macro to 1 to make the library use STL containers instead of its own implementation.
+//#define VMA_USE_STL_CONTAINERS 1
+
+/* Set this macro to 1 to make the library including and using STL containers:
+std::pair, std::vector, std::list, std::unordered_map.
+
+Set it to 0 or undefined to make the library using its own implementation of
+the containers.
+*/
+#if VMA_USE_STL_CONTAINERS
+ #define VMA_USE_STL_VECTOR 1
+ #define VMA_USE_STL_UNORDERED_MAP 1
+ #define VMA_USE_STL_LIST 1
+#endif
+
+#ifndef VMA_USE_STL_SHARED_MUTEX
+ // Compiler conforms to C++17.
+ #if __cplusplus >= 201703L
+ #define VMA_USE_STL_SHARED_MUTEX 1
+ // Visual studio defines __cplusplus properly only when passed additional parameter: /Zc:__cplusplus
+ // Otherwise it's always 199711L, despite shared_mutex works since Visual Studio 2015 Update 2.
+ // See: https://blogs.msdn.microsoft.com/vcblog/2018/04/09/msvc-now-correctly-reports-__cplusplus/
+ #elif defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 190023918 && __cplusplus == 199711L && _MSVC_LANG >= 201703L
+ #define VMA_USE_STL_SHARED_MUTEX 1
+ #else
+ #define VMA_USE_STL_SHARED_MUTEX 0
+ #endif
+#endif
+
+/*
+THESE INCLUDES ARE NOT ENABLED BY DEFAULT.
+Library has its own container implementation.
+*/
+#if VMA_USE_STL_VECTOR
+ #include <vector>
+#endif
+
+#if VMA_USE_STL_UNORDERED_MAP
+ #include <unordered_map>
+#endif
+
+#if VMA_USE_STL_LIST
+ #include <list>
+#endif
+
+/*
+Following headers are used in this CONFIGURATION section only, so feel free to
+remove them if not needed.
+*/
+#include <cassert> // for assert
+#include <algorithm> // for min, max
+#include <mutex>
+
+#ifndef VMA_NULL
+ // Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0.
+ #define VMA_NULL nullptr
+#endif
+
+#if defined(__ANDROID_API__) && (__ANDROID_API__ < 16)
+#include <cstdlib>
+void *aligned_alloc(size_t alignment, size_t size)
+{
+ // alignment must be >= sizeof(void*)
+ if(alignment < sizeof(void*))
+ {
+ alignment = sizeof(void*);
+ }
+
+ return memalign(alignment, size);
+}
+#elif defined(__APPLE__) || defined(__ANDROID__)
+#include <cstdlib>
+void *aligned_alloc(size_t alignment, size_t size)
+{
+ // alignment must be >= sizeof(void*)
+ if(alignment < sizeof(void*))
+ {
+ alignment = sizeof(void*);
+ }
+
+ void *pointer;
+ if(posix_memalign(&pointer, alignment, size) == 0)
+ return pointer;
+ return VMA_NULL;
+}
+#endif
+
+// If your compiler is not compatible with C++11 and definition of
+// aligned_alloc() function is missing, uncommeting following line may help:
+
+//#include <malloc.h>
+
+// Normal assert to check for programmer's errors, especially in Debug configuration.
+#ifndef VMA_ASSERT
+ #ifdef _DEBUG
+ #define VMA_ASSERT(expr) assert(expr)
+ #else
+ #define VMA_ASSERT(expr)
+ #endif
+#endif
+
+// Assert that will be called very often, like inside data structures e.g. operator[].
+// Making it non-empty can make program slow.
+#ifndef VMA_HEAVY_ASSERT
+ #ifdef _DEBUG
+ #define VMA_HEAVY_ASSERT(expr) //VMA_ASSERT(expr)
+ #else
+ #define VMA_HEAVY_ASSERT(expr)
+ #endif
+#endif
+
+#ifndef VMA_ALIGN_OF
+ #define VMA_ALIGN_OF(type) (__alignof(type))
+#endif
+
+#ifndef VMA_SYSTEM_ALIGNED_MALLOC
+ #if defined(_WIN32)
+ #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) (_aligned_malloc((size), (alignment)))
+ #else
+ #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) (aligned_alloc((alignment), (size) ))
+ #endif
+#endif
+
+#ifndef VMA_SYSTEM_FREE
+ #if defined(_WIN32)
+ #define VMA_SYSTEM_FREE(ptr) _aligned_free(ptr)
+ #else
+ #define VMA_SYSTEM_FREE(ptr) free(ptr)
+ #endif
+#endif
+
+#ifndef VMA_MIN
+ #define VMA_MIN(v1, v2) (std::min((v1), (v2)))
+#endif
+
+#ifndef VMA_MAX
+ #define VMA_MAX(v1, v2) (std::max((v1), (v2)))
+#endif
+
+#ifndef VMA_SWAP
+ #define VMA_SWAP(v1, v2) std::swap((v1), (v2))
+#endif
+
+#ifndef VMA_SORT
+ #define VMA_SORT(beg, end, cmp) std::sort(beg, end, cmp)
+#endif
+
+#ifndef VMA_DEBUG_LOG
+ #define VMA_DEBUG_LOG(format, ...)
+ /*
+ #define VMA_DEBUG_LOG(format, ...) do { \
+ printf(format, __VA_ARGS__); \
+ printf("\n"); \
+ } while(false)
+ */
+#endif
+
+// Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString.
+#if VMA_STATS_STRING_ENABLED
+ static inline void VmaUint32ToStr(char* outStr, size_t strLen, uint32_t num)
+ {
+ snprintf(outStr, strLen, "%u", static_cast<unsigned int>(num));
+ }
+ static inline void VmaUint64ToStr(char* outStr, size_t strLen, uint64_t num)
+ {
+ snprintf(outStr, strLen, "%llu", static_cast<unsigned long long>(num));
+ }
+ static inline void VmaPtrToStr(char* outStr, size_t strLen, const void* ptr)
+ {
+ snprintf(outStr, strLen, "%p", ptr);
+ }
+#endif
+
+#ifndef VMA_MUTEX
+ class VmaMutex
+ {
+ public:
+ void Lock() { m_Mutex.lock(); }
+ void Unlock() { m_Mutex.unlock(); }
+ private:
+ std::mutex m_Mutex;
+ };
+ #define VMA_MUTEX VmaMutex
+#endif
+
+// Read-write mutex, where "read" is shared access, "write" is exclusive access.
+#ifndef VMA_RW_MUTEX
+ #if VMA_USE_STL_SHARED_MUTEX
+ // Use std::shared_mutex from C++17.
+ #include <shared_mutex>
+ class VmaRWMutex
+ {
+ public:
+ void LockRead() { m_Mutex.lock_shared(); }
+ void UnlockRead() { m_Mutex.unlock_shared(); }
+ void LockWrite() { m_Mutex.lock(); }
+ void UnlockWrite() { m_Mutex.unlock(); }
+ private:
+ std::shared_mutex m_Mutex;
+ };
+ #define VMA_RW_MUTEX VmaRWMutex
+ #elif defined(_WIN32) && defined(WINVER) && WINVER >= 0x0600
+ // Use SRWLOCK from WinAPI.
+ // Minimum supported client = Windows Vista, server = Windows Server 2008.
+ class VmaRWMutex
+ {
+ public:
+ VmaRWMutex() { InitializeSRWLock(&m_Lock); }
+ void LockRead() { AcquireSRWLockShared(&m_Lock); }
+ void UnlockRead() { ReleaseSRWLockShared(&m_Lock); }
+ void LockWrite() { AcquireSRWLockExclusive(&m_Lock); }
+ void UnlockWrite() { ReleaseSRWLockExclusive(&m_Lock); }
+ private:
+ SRWLOCK m_Lock;
+ };
+ #define VMA_RW_MUTEX VmaRWMutex
+ #else
+ // Less efficient fallback: Use normal mutex.
+ class VmaRWMutex
+ {
+ public:
+ void LockRead() { m_Mutex.Lock(); }
+ void UnlockRead() { m_Mutex.Unlock(); }
+ void LockWrite() { m_Mutex.Lock(); }
+ void UnlockWrite() { m_Mutex.Unlock(); }
+ private:
+ VMA_MUTEX m_Mutex;
+ };
+ #define VMA_RW_MUTEX VmaRWMutex
+ #endif // #if VMA_USE_STL_SHARED_MUTEX
+#endif // #ifndef VMA_RW_MUTEX
+
+/*
+If providing your own implementation, you need to implement a subset of std::atomic:
+
+- Constructor(uint32_t desired)
+- uint32_t load() const
+- void store(uint32_t desired)
+- bool compare_exchange_weak(uint32_t& expected, uint32_t desired)
+*/
+#ifndef VMA_ATOMIC_UINT32
+ #include <atomic>
+ #define VMA_ATOMIC_UINT32 std::atomic<uint32_t>
+#endif
+
+#ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY
+ /**
+ Every allocation will have its own memory block.
+ Define to 1 for debugging purposes only.
+ */
+ #define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0)
+#endif
+
+#ifndef VMA_DEBUG_ALIGNMENT
+ /**
+ Minimum alignment of all allocations, in bytes.
+ Set to more than 1 for debugging purposes only. Must be power of two.
+ */
+ #define VMA_DEBUG_ALIGNMENT (1)
+#endif
+
+#ifndef VMA_DEBUG_MARGIN
+ /**
+ Minimum margin before and after every allocation, in bytes.
+ Set nonzero for debugging purposes only.
+ */
+ #define VMA_DEBUG_MARGIN (0)
+#endif
+
+#ifndef VMA_DEBUG_INITIALIZE_ALLOCATIONS
+ /**
+ Define this macro to 1 to automatically fill new allocations and destroyed
+ allocations with some bit pattern.
+ */
+ #define VMA_DEBUG_INITIALIZE_ALLOCATIONS (0)
+#endif
+
+#ifndef VMA_DEBUG_DETECT_CORRUPTION
+ /**
+ Define this macro to 1 together with non-zero value of VMA_DEBUG_MARGIN to
+ enable writing magic value to the margin before and after every allocation and
+ validating it, so that memory corruptions (out-of-bounds writes) are detected.
+ */
+ #define VMA_DEBUG_DETECT_CORRUPTION (0)
+#endif
+
+#ifndef VMA_DEBUG_GLOBAL_MUTEX
+ /**
+ Set this to 1 for debugging purposes only, to enable single mutex protecting all
+ entry calls to the library. Can be useful for debugging multithreading issues.
+ */
+ #define VMA_DEBUG_GLOBAL_MUTEX (0)
+#endif
+
+#ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY
+ /**
+ Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity.
+ Set to more than 1 for debugging purposes only. Must be power of two.
+ */
+ #define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1)
+#endif
+
+#ifndef VMA_SMALL_HEAP_MAX_SIZE
+ /// Maximum size of a memory heap in Vulkan to consider it "small".
+ #define VMA_SMALL_HEAP_MAX_SIZE (1024ull * 1024 * 1024)
+#endif
+
+#ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE
+ /// Default size of a block allocated as single VkDeviceMemory from a "large" heap.
+ #define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256ull * 1024 * 1024)
+#endif
+
+#ifndef VMA_CLASS_NO_COPY
+ #define VMA_CLASS_NO_COPY(className) \
+ private: \
+ className(const className&) = delete; \
+ className& operator=(const className&) = delete;
+#endif
+
+static const uint32_t VMA_FRAME_INDEX_LOST = UINT32_MAX;
+
+// Decimal 2139416166, float NaN, little-endian binary 66 E6 84 7F.
+static const uint32_t VMA_CORRUPTION_DETECTION_MAGIC_VALUE = 0x7F84E666;
+
+static const uint8_t VMA_ALLOCATION_FILL_PATTERN_CREATED = 0xDC;
+static const uint8_t VMA_ALLOCATION_FILL_PATTERN_DESTROYED = 0xEF;
+
+/*******************************************************************************
+END OF CONFIGURATION
+*/
+
+static const uint32_t VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET = 0x10000000u;
+
+static VkAllocationCallbacks VmaEmptyAllocationCallbacks = {
+ VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL };
+
+// Returns number of bits set to 1 in (v).
+static inline uint32_t VmaCountBitsSet(uint32_t v)
+{
+ uint32_t c = v - ((v >> 1) & 0x55555555);
+ c = ((c >> 2) & 0x33333333) + (c & 0x33333333);
+ c = ((c >> 4) + c) & 0x0F0F0F0F;
+ c = ((c >> 8) + c) & 0x00FF00FF;
+ c = ((c >> 16) + c) & 0x0000FFFF;
+ return c;
+}
+
+// Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16.
+// Use types like uint32_t, uint64_t as T.
+template <typename T>
+static inline T VmaAlignUp(T val, T align)
+{
+ return (val + align - 1) / align * align;
+}
+// Aligns given value down to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 8.
+// Use types like uint32_t, uint64_t as T.
+template <typename T>
+static inline T VmaAlignDown(T val, T align)
+{
+ return val / align * align;
+}
+
+// Division with mathematical rounding to nearest number.
+template <typename T>
+static inline T VmaRoundDiv(T x, T y)
+{
+ return (x + (y / (T)2)) / y;
+}
+
+/*
+Returns true if given number is a power of two.
+T must be unsigned integer number or signed integer but always nonnegative.
+For 0 returns true.
+*/
+template <typename T>
+inline bool VmaIsPow2(T x)
+{
+ return (x & (x-1)) == 0;
+}
+
+// Returns smallest power of 2 greater or equal to v.
+static inline uint32_t VmaNextPow2(uint32_t v)
+{
+ v--;
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ v++;
+ return v;
+}
+static inline uint64_t VmaNextPow2(uint64_t v)
+{
+ v--;
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ v |= v >> 32;
+ v++;
+ return v;
+}
+
+// Returns largest power of 2 less or equal to v.
+static inline uint32_t VmaPrevPow2(uint32_t v)
+{
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ v = v ^ (v >> 1);
+ return v;
+}
+static inline uint64_t VmaPrevPow2(uint64_t v)
+{
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ v |= v >> 32;
+ v = v ^ (v >> 1);
+ return v;
+}
+
+static inline bool VmaStrIsEmpty(const char* pStr)
+{
+ return pStr == VMA_NULL || *pStr == '\0';
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+static const char* VmaAlgorithmToStr(uint32_t algorithm)
+{
+ switch(algorithm)
+ {
+ case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT:
+ return "Linear";
+ case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT:
+ return "Buddy";
+ case 0:
+ return "Default";
+ default:
+ VMA_ASSERT(0);
+ return "";
+ }
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+#ifndef VMA_SORT
+
+template<typename Iterator, typename Compare>
+Iterator VmaQuickSortPartition(Iterator beg, Iterator end, Compare cmp)
+{
+ Iterator centerValue = end; --centerValue;
+ Iterator insertIndex = beg;
+ for(Iterator memTypeIndex = beg; memTypeIndex < centerValue; ++memTypeIndex)
+ {
+ if(cmp(*memTypeIndex, *centerValue))
+ {
+ if(insertIndex != memTypeIndex)
+ {
+ VMA_SWAP(*memTypeIndex, *insertIndex);
+ }
+ ++insertIndex;
+ }
+ }
+ if(insertIndex != centerValue)
+ {
+ VMA_SWAP(*insertIndex, *centerValue);
+ }
+ return insertIndex;
+}
+
+template<typename Iterator, typename Compare>
+void VmaQuickSort(Iterator beg, Iterator end, Compare cmp)
+{
+ if(beg < end)
+ {
+ Iterator it = VmaQuickSortPartition<Iterator, Compare>(beg, end, cmp);
+ VmaQuickSort<Iterator, Compare>(beg, it, cmp);
+ VmaQuickSort<Iterator, Compare>(it + 1, end, cmp);
+ }
+}
+
+#define VMA_SORT(beg, end, cmp) VmaQuickSort(beg, end, cmp)
+
+#endif // #ifndef VMA_SORT
+
+/*
+Returns true if two memory blocks occupy overlapping pages.
+ResourceA must be in less memory offset than ResourceB.
+
+Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)"
+chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity".
+*/
+static inline bool VmaBlocksOnSamePage(
+ VkDeviceSize resourceAOffset,
+ VkDeviceSize resourceASize,
+ VkDeviceSize resourceBOffset,
+ VkDeviceSize pageSize)
+{
+ VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0);
+ VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1;
+ VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1);
+ VkDeviceSize resourceBStart = resourceBOffset;
+ VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1);
+ return resourceAEndPage == resourceBStartPage;
+}
+
+enum VmaSuballocationType
+{
+ VMA_SUBALLOCATION_TYPE_FREE = 0,
+ VMA_SUBALLOCATION_TYPE_UNKNOWN = 1,
+ VMA_SUBALLOCATION_TYPE_BUFFER = 2,
+ VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3,
+ VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4,
+ VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5,
+ VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF
+};
+
+/*
+Returns true if given suballocation types could conflict and must respect
+VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer
+or linear image and another one is optimal image. If type is unknown, behave
+conservatively.
+*/
+static inline bool VmaIsBufferImageGranularityConflict(
+ VmaSuballocationType suballocType1,
+ VmaSuballocationType suballocType2)
+{
+ if(suballocType1 > suballocType2)
+ {
+ VMA_SWAP(suballocType1, suballocType2);
+ }
+
+ switch(suballocType1)
+ {
+ case VMA_SUBALLOCATION_TYPE_FREE:
+ return false;
+ case VMA_SUBALLOCATION_TYPE_UNKNOWN:
+ return true;
+ case VMA_SUBALLOCATION_TYPE_BUFFER:
+ return
+ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
+ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
+ case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN:
+ return
+ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
+ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR ||
+ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
+ case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR:
+ return
+ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
+ case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL:
+ return false;
+ default:
+ VMA_ASSERT(0);
+ return true;
+ }
+}
+
+static void VmaWriteMagicValue(void* pData, VkDeviceSize offset)
+{
+#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION
+ uint32_t* pDst = (uint32_t*)((char*)pData + offset);
+ const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t);
+ for(size_t i = 0; i < numberCount; ++i, ++pDst)
+ {
+ *pDst = VMA_CORRUPTION_DETECTION_MAGIC_VALUE;
+ }
+#else
+ // no-op
+#endif
+}
+
+static bool VmaValidateMagicValue(const void* pData, VkDeviceSize offset)
+{
+#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION
+ const uint32_t* pSrc = (const uint32_t*)((const char*)pData + offset);
+ const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t);
+ for(size_t i = 0; i < numberCount; ++i, ++pSrc)
+ {
+ if(*pSrc != VMA_CORRUPTION_DETECTION_MAGIC_VALUE)
+ {
+ return false;
+ }
+ }
+#endif
+ return true;
+}
+
+/*
+Fills structure with parameters of an example buffer to be used for transfers
+during GPU memory defragmentation.
+*/
+static void VmaFillGpuDefragmentationBufferCreateInfo(VkBufferCreateInfo& outBufCreateInfo)
+{
+ memset(&outBufCreateInfo, 0, sizeof(outBufCreateInfo));
+ outBufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
+ outBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+ outBufCreateInfo.size = (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE; // Example size.
+}
+
+// Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope).
+struct VmaMutexLock
+{
+ VMA_CLASS_NO_COPY(VmaMutexLock)
+public:
+ VmaMutexLock(VMA_MUTEX& mutex, bool useMutex = true) :
+ m_pMutex(useMutex ? &mutex : VMA_NULL)
+ { if(m_pMutex) { m_pMutex->Lock(); } }
+ ~VmaMutexLock()
+ { if(m_pMutex) { m_pMutex->Unlock(); } }
+private:
+ VMA_MUTEX* m_pMutex;
+};
+
+// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for reading.
+struct VmaMutexLockRead
+{
+ VMA_CLASS_NO_COPY(VmaMutexLockRead)
+public:
+ VmaMutexLockRead(VMA_RW_MUTEX& mutex, bool useMutex) :
+ m_pMutex(useMutex ? &mutex : VMA_NULL)
+ { if(m_pMutex) { m_pMutex->LockRead(); } }
+ ~VmaMutexLockRead() { if(m_pMutex) { m_pMutex->UnlockRead(); } }
+private:
+ VMA_RW_MUTEX* m_pMutex;
+};
+
+// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for writing.
+struct VmaMutexLockWrite
+{
+ VMA_CLASS_NO_COPY(VmaMutexLockWrite)
+public:
+ VmaMutexLockWrite(VMA_RW_MUTEX& mutex, bool useMutex) :
+ m_pMutex(useMutex ? &mutex : VMA_NULL)
+ { if(m_pMutex) { m_pMutex->LockWrite(); } }
+ ~VmaMutexLockWrite() { if(m_pMutex) { m_pMutex->UnlockWrite(); } }
+private:
+ VMA_RW_MUTEX* m_pMutex;
+};
+
+#if VMA_DEBUG_GLOBAL_MUTEX
+ static VMA_MUTEX gDebugGlobalMutex;
+ #define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true);
+#else
+ #define VMA_DEBUG_GLOBAL_MUTEX_LOCK
+#endif
+
+// Minimum size of a free suballocation to register it in the free suballocation collection.
+static const VkDeviceSize VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER = 16;
+
+/*
+Performs binary search and returns iterator to first element that is greater or
+equal to (key), according to comparison (cmp).
+
+Cmp should return true if first argument is less than second argument.
+
+Returned value is the found element, if present in the collection or place where
+new element with value (key) should be inserted.
+*/
+template <typename CmpLess, typename IterT, typename KeyT>
+static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT &key, const CmpLess& cmp)
+{
+ size_t down = 0, up = (end - beg);
+ while(down < up)
+ {
+ const size_t mid = (down + up) / 2;
+ if(cmp(*(beg+mid), key))
+ {
+ down = mid + 1;
+ }
+ else
+ {
+ up = mid;
+ }
+ }
+ return beg + down;
+}
+
+template<typename CmpLess, typename IterT, typename KeyT>
+IterT VmaBinaryFindSorted(const IterT& beg, const IterT& end, const KeyT& value, const CmpLess& cmp)
+{
+ IterT it = VmaBinaryFindFirstNotLess<CmpLess, IterT, KeyT>(
+ beg, end, value, cmp);
+ if(it == end ||
+ (!cmp(*it, value) && !cmp(value, *it)))
+ {
+ return it;
+ }
+ return end;
+}
+
+/*
+Returns true if all pointers in the array are not-null and unique.
+Warning! O(n^2) complexity. Use only inside VMA_HEAVY_ASSERT.
+T must be pointer type, e.g. VmaAllocation, VmaPool.
+*/
+template<typename T>
+static bool VmaValidatePointerArray(uint32_t count, const T* arr)
+{
+ for(uint32_t i = 0; i < count; ++i)
+ {
+ const T iPtr = arr[i];
+ if(iPtr == VMA_NULL)
+ {
+ return false;
+ }
+ for(uint32_t j = i + 1; j < count; ++j)
+ {
+ if(iPtr == arr[j])
+ {
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Memory allocation
+
+static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment)
+{
+ if((pAllocationCallbacks != VMA_NULL) &&
+ (pAllocationCallbacks->pfnAllocation != VMA_NULL))
+ {
+ return (*pAllocationCallbacks->pfnAllocation)(
+ pAllocationCallbacks->pUserData,
+ size,
+ alignment,
+ VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
+ }
+ else
+ {
+ return VMA_SYSTEM_ALIGNED_MALLOC(size, alignment);
+ }
+}
+
+static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr)
+{
+ if((pAllocationCallbacks != VMA_NULL) &&
+ (pAllocationCallbacks->pfnFree != VMA_NULL))
+ {
+ (*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr);
+ }
+ else
+ {
+ VMA_SYSTEM_FREE(ptr);
+ }
+}
+
+template<typename T>
+static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks)
+{
+ return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T));
+}
+
+template<typename T>
+static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count)
+{
+ return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T));
+}
+
+#define vma_new(allocator, type) new(VmaAllocate<type>(allocator))(type)
+
+#define vma_new_array(allocator, type, count) new(VmaAllocateArray<type>((allocator), (count)))(type)
+
+template<typename T>
+static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr)
+{
+ ptr->~T();
+ VmaFree(pAllocationCallbacks, ptr);
+}
+
+template<typename T>
+static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count)
+{
+ if(ptr != VMA_NULL)
+ {
+ for(size_t i = count; i--; )
+ {
+ ptr[i].~T();
+ }
+ VmaFree(pAllocationCallbacks, ptr);
+ }
+}
+
+// STL-compatible allocator.
+template<typename T>
+class VmaStlAllocator
+{
+public:
+ const VkAllocationCallbacks* const m_pCallbacks;
+ typedef T value_type;
+
+ VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) { }
+ template<typename U> VmaStlAllocator(const VmaStlAllocator<U>& src) : m_pCallbacks(src.m_pCallbacks) { }
+
+ T* allocate(size_t n) { return VmaAllocateArray<T>(m_pCallbacks, n); }
+ void deallocate(T* p, size_t n) { VmaFree(m_pCallbacks, p); }
+
+ template<typename U>
+ bool operator==(const VmaStlAllocator<U>& rhs) const
+ {
+ return m_pCallbacks == rhs.m_pCallbacks;
+ }
+ template<typename U>
+ bool operator!=(const VmaStlAllocator<U>& rhs) const
+ {
+ return m_pCallbacks != rhs.m_pCallbacks;
+ }
+
+ VmaStlAllocator& operator=(const VmaStlAllocator& x) = delete;
+};
+
+#if VMA_USE_STL_VECTOR
+
+#define VmaVector std::vector
+
+template<typename T, typename allocatorT>
+static void VmaVectorInsert(std::vector<T, allocatorT>& vec, size_t index, const T& item)
+{
+ vec.insert(vec.begin() + index, item);
+}
+
+template<typename T, typename allocatorT>
+static void VmaVectorRemove(std::vector<T, allocatorT>& vec, size_t index)
+{
+ vec.erase(vec.begin() + index);
+}
+
+#else // #if VMA_USE_STL_VECTOR
+
+/* Class with interface compatible with subset of std::vector.
+T must be POD because constructors and destructors are not called and memcpy is
+used for these objects. */
+template<typename T, typename AllocatorT>
+class VmaVector
+{
+public:
+ typedef T value_type;
+
+ VmaVector(const AllocatorT& allocator) :
+ m_Allocator(allocator),
+ m_pArray(VMA_NULL),
+ m_Count(0),
+ m_Capacity(0)
+ {
+ }
+
+ VmaVector(size_t count, const AllocatorT& allocator) :
+ m_Allocator(allocator),
+ m_pArray(count ? (T*)VmaAllocateArray<T>(allocator.m_pCallbacks, count) : VMA_NULL),
+ m_Count(count),
+ m_Capacity(count)
+ {
+ }
+
+ // This version of the constructor is here for compatibility with pre-C++14 std::vector.
+ // value is unused.
+ VmaVector(size_t count, const T& value, const AllocatorT& allocator)
+ : VmaVector(count, allocator) {}
+
+ VmaVector(const VmaVector<T, AllocatorT>& src) :
+ m_Allocator(src.m_Allocator),
+ m_pArray(src.m_Count ? (T*)VmaAllocateArray<T>(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL),
+ m_Count(src.m_Count),
+ m_Capacity(src.m_Count)
+ {
+ if(m_Count != 0)
+ {
+ memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T));
+ }
+ }
+
+ ~VmaVector()
+ {
+ VmaFree(m_Allocator.m_pCallbacks, m_pArray);
+ }
+
+ VmaVector& operator=(const VmaVector<T, AllocatorT>& rhs)
+ {
+ if(&rhs != this)
+ {
+ resize(rhs.m_Count);
+ if(m_Count != 0)
+ {
+ memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T));
+ }
+ }
+ return *this;
+ }
+
+ bool empty() const { return m_Count == 0; }
+ size_t size() const { return m_Count; }
+ T* data() { return m_pArray; }
+ const T* data() const { return m_pArray; }
+
+ T& operator[](size_t index)
+ {
+ VMA_HEAVY_ASSERT(index < m_Count);
+ return m_pArray[index];
+ }
+ const T& operator[](size_t index) const
+ {
+ VMA_HEAVY_ASSERT(index < m_Count);
+ return m_pArray[index];
+ }
+
+ T& front()
+ {
+ VMA_HEAVY_ASSERT(m_Count > 0);
+ return m_pArray[0];
+ }
+ const T& front() const
+ {
+ VMA_HEAVY_ASSERT(m_Count > 0);
+ return m_pArray[0];
+ }
+ T& back()
+ {
+ VMA_HEAVY_ASSERT(m_Count > 0);
+ return m_pArray[m_Count - 1];
+ }
+ const T& back() const
+ {
+ VMA_HEAVY_ASSERT(m_Count > 0);
+ return m_pArray[m_Count - 1];
+ }
+
+ void reserve(size_t newCapacity, bool freeMemory = false)
+ {
+ newCapacity = VMA_MAX(newCapacity, m_Count);
+
+ if((newCapacity < m_Capacity) && !freeMemory)
+ {
+ newCapacity = m_Capacity;
+ }
+
+ if(newCapacity != m_Capacity)
+ {
+ T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator, newCapacity) : VMA_NULL;
+ if(m_Count != 0)
+ {
+ memcpy(newArray, m_pArray, m_Count * sizeof(T));
+ }
+ VmaFree(m_Allocator.m_pCallbacks, m_pArray);
+ m_Capacity = newCapacity;
+ m_pArray = newArray;
+ }
+ }
+
+ void resize(size_t newCount, bool freeMemory = false)
+ {
+ size_t newCapacity = m_Capacity;
+ if(newCount > m_Capacity)
+ {
+ newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8));
+ }
+ else if(freeMemory)
+ {
+ newCapacity = newCount;
+ }
+
+ if(newCapacity != m_Capacity)
+ {
+ T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL;
+ const size_t elementsToCopy = VMA_MIN(m_Count, newCount);
+ if(elementsToCopy != 0)
+ {
+ memcpy(newArray, m_pArray, elementsToCopy * sizeof(T));
+ }
+ VmaFree(m_Allocator.m_pCallbacks, m_pArray);
+ m_Capacity = newCapacity;
+ m_pArray = newArray;
+ }
+
+ m_Count = newCount;
+ }
+
+ void clear(bool freeMemory = false)
+ {
+ resize(0, freeMemory);
+ }
+
+ void insert(size_t index, const T& src)
+ {
+ VMA_HEAVY_ASSERT(index <= m_Count);
+ const size_t oldCount = size();
+ resize(oldCount + 1);
+ if(index < oldCount)
+ {
+ memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T));
+ }
+ m_pArray[index] = src;
+ }
+
+ void remove(size_t index)
+ {
+ VMA_HEAVY_ASSERT(index < m_Count);
+ const size_t oldCount = size();
+ if(index < oldCount - 1)
+ {
+ memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T));
+ }
+ resize(oldCount - 1);
+ }
+
+ void push_back(const T& src)
+ {
+ const size_t newIndex = size();
+ resize(newIndex + 1);
+ m_pArray[newIndex] = src;
+ }
+
+ void pop_back()
+ {
+ VMA_HEAVY_ASSERT(m_Count > 0);
+ resize(size() - 1);
+ }
+
+ void push_front(const T& src)
+ {
+ insert(0, src);
+ }
+
+ void pop_front()
+ {
+ VMA_HEAVY_ASSERT(m_Count > 0);
+ remove(0);
+ }
+
+ typedef T* iterator;
+
+ iterator begin() { return m_pArray; }
+ iterator end() { return m_pArray + m_Count; }
+
+private:
+ AllocatorT m_Allocator;
+ T* m_pArray;
+ size_t m_Count;
+ size_t m_Capacity;
+};
+
+template<typename T, typename allocatorT>
+static void VmaVectorInsert(VmaVector<T, allocatorT>& vec, size_t index, const T& item)
+{
+ vec.insert(index, item);
+}
+
+template<typename T, typename allocatorT>
+static void VmaVectorRemove(VmaVector<T, allocatorT>& vec, size_t index)
+{
+ vec.remove(index);
+}
+
+#endif // #if VMA_USE_STL_VECTOR
+
+template<typename CmpLess, typename VectorT>
+size_t VmaVectorInsertSorted(VectorT& vector, const typename VectorT::value_type& value)
+{
+ const size_t indexToInsert = VmaBinaryFindFirstNotLess(
+ vector.data(),
+ vector.data() + vector.size(),
+ value,
+ CmpLess()) - vector.data();
+ VmaVectorInsert(vector, indexToInsert, value);
+ return indexToInsert;
+}
+
+template<typename CmpLess, typename VectorT>
+bool VmaVectorRemoveSorted(VectorT& vector, const typename VectorT::value_type& value)
+{
+ CmpLess comparator;
+ typename VectorT::iterator it = VmaBinaryFindFirstNotLess(
+ vector.begin(),
+ vector.end(),
+ value,
+ comparator);
+ if((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it))
+ {
+ size_t indexToRemove = it - vector.begin();
+ VmaVectorRemove(vector, indexToRemove);
+ return true;
+ }
+ return false;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaPoolAllocator
+
+/*
+Allocator for objects of type T using a list of arrays (pools) to speed up
+allocation. Number of elements that can be allocated is not bounded because
+allocator can create multiple blocks.
+*/
+template<typename T>
+class VmaPoolAllocator
+{
+ VMA_CLASS_NO_COPY(VmaPoolAllocator)
+public:
+ VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity);
+ ~VmaPoolAllocator();
+ T* Alloc();
+ void Free(T* ptr);
+
+private:
+ union Item
+ {
+ uint32_t NextFreeIndex;
+ alignas(T) char Value[sizeof(T)];
+ };
+
+ struct ItemBlock
+ {
+ Item* pItems;
+ uint32_t Capacity;
+ uint32_t FirstFreeIndex;
+ };
+
+ const VkAllocationCallbacks* m_pAllocationCallbacks;
+ const uint32_t m_FirstBlockCapacity;
+ VmaVector< ItemBlock, VmaStlAllocator<ItemBlock> > m_ItemBlocks;
+
+ ItemBlock& CreateNewBlock();
+};
+
+template<typename T>
+VmaPoolAllocator<T>::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity) :
+ m_pAllocationCallbacks(pAllocationCallbacks),
+ m_FirstBlockCapacity(firstBlockCapacity),
+ m_ItemBlocks(VmaStlAllocator<ItemBlock>(pAllocationCallbacks))
+{
+ VMA_ASSERT(m_FirstBlockCapacity > 1);
+}
+
+template<typename T>
+VmaPoolAllocator<T>::~VmaPoolAllocator()
+{
+ for(size_t i = m_ItemBlocks.size(); i--; )
+ vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemBlocks[i].Capacity);
+ m_ItemBlocks.clear();
+}
+
+template<typename T>
+T* VmaPoolAllocator<T>::Alloc()
+{
+ for(size_t i = m_ItemBlocks.size(); i--; )
+ {
+ ItemBlock& block = m_ItemBlocks[i];
+ // This block has some free items: Use first one.
+ if(block.FirstFreeIndex != UINT32_MAX)
+ {
+ Item* const pItem = &block.pItems[block.FirstFreeIndex];
+ block.FirstFreeIndex = pItem->NextFreeIndex;
+ T* result = (T*)&pItem->Value;
+ new(result)T(); // Explicit constructor call.
+ return result;
+ }
+ }
+
+ // No block has free item: Create new one and use it.
+ ItemBlock& newBlock = CreateNewBlock();
+ Item* const pItem = &newBlock.pItems[0];
+ newBlock.FirstFreeIndex = pItem->NextFreeIndex;
+ T* result = (T*)&pItem->Value;
+ new(result)T(); // Explicit constructor call.
+ return result;
+}
+
+template<typename T>
+void VmaPoolAllocator<T>::Free(T* ptr)
+{
+ // Search all memory blocks to find ptr.
+ for(size_t i = m_ItemBlocks.size(); i--; )
+ {
+ ItemBlock& block = m_ItemBlocks[i];
+
+ // Casting to union.
+ Item* pItemPtr;
+ memcpy(&pItemPtr, &ptr, sizeof(pItemPtr));
+
+ // Check if pItemPtr is in address range of this block.
+ if((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + block.Capacity))
+ {
+ ptr->~T(); // Explicit destructor call.
+ const uint32_t index = static_cast<uint32_t>(pItemPtr - block.pItems);
+ pItemPtr->NextFreeIndex = block.FirstFreeIndex;
+ block.FirstFreeIndex = index;
+ return;
+ }
+ }
+ VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool.");
+}
+
+template<typename T>
+typename VmaPoolAllocator<T>::ItemBlock& VmaPoolAllocator<T>::CreateNewBlock()
+{
+ const uint32_t newBlockCapacity = m_ItemBlocks.empty() ?
+ m_FirstBlockCapacity : m_ItemBlocks.back().Capacity * 3 / 2;
+
+ const ItemBlock newBlock = {
+ vma_new_array(m_pAllocationCallbacks, Item, newBlockCapacity),
+ newBlockCapacity,
+ 0 };
+
+ m_ItemBlocks.push_back(newBlock);
+
+ // Setup singly-linked list of all free items in this block.
+ for(uint32_t i = 0; i < newBlockCapacity - 1; ++i)
+ newBlock.pItems[i].NextFreeIndex = i + 1;
+ newBlock.pItems[newBlockCapacity - 1].NextFreeIndex = UINT32_MAX;
+ return m_ItemBlocks.back();
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaRawList, VmaList
+
+#if VMA_USE_STL_LIST
+
+#define VmaList std::list
+
+#else // #if VMA_USE_STL_LIST
+
+template<typename T>
+struct VmaListItem
+{
+ VmaListItem* pPrev;
+ VmaListItem* pNext;
+ T Value;
+};
+
+// Doubly linked list.
+template<typename T>
+class VmaRawList
+{
+ VMA_CLASS_NO_COPY(VmaRawList)
+public:
+ typedef VmaListItem<T> ItemType;
+
+ VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks);
+ ~VmaRawList();
+ void Clear();
+
+ size_t GetCount() const { return m_Count; }
+ bool IsEmpty() const { return m_Count == 0; }
+
+ ItemType* Front() { return m_pFront; }
+ const ItemType* Front() const { return m_pFront; }
+ ItemType* Back() { return m_pBack; }
+ const ItemType* Back() const { return m_pBack; }
+
+ ItemType* PushBack();
+ ItemType* PushFront();
+ ItemType* PushBack(const T& value);
+ ItemType* PushFront(const T& value);
+ void PopBack();
+ void PopFront();
+
+ // Item can be null - it means PushBack.
+ ItemType* InsertBefore(ItemType* pItem);
+ // Item can be null - it means PushFront.
+ ItemType* InsertAfter(ItemType* pItem);
+
+ ItemType* InsertBefore(ItemType* pItem, const T& value);
+ ItemType* InsertAfter(ItemType* pItem, const T& value);
+
+ void Remove(ItemType* pItem);
+
+private:
+ const VkAllocationCallbacks* const m_pAllocationCallbacks;
+ VmaPoolAllocator<ItemType> m_ItemAllocator;
+ ItemType* m_pFront;
+ ItemType* m_pBack;
+ size_t m_Count;
+};
+
+template<typename T>
+VmaRawList<T>::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks) :
+ m_pAllocationCallbacks(pAllocationCallbacks),
+ m_ItemAllocator(pAllocationCallbacks, 128),
+ m_pFront(VMA_NULL),
+ m_pBack(VMA_NULL),
+ m_Count(0)
+{
+}
+
+template<typename T>
+VmaRawList<T>::~VmaRawList()
+{
+ // Intentionally not calling Clear, because that would be unnecessary
+ // computations to return all items to m_ItemAllocator as free.
+}
+
+template<typename T>
+void VmaRawList<T>::Clear()
+{
+ if(IsEmpty() == false)
+ {
+ ItemType* pItem = m_pBack;
+ while(pItem != VMA_NULL)
+ {
+ ItemType* const pPrevItem = pItem->pPrev;
+ m_ItemAllocator.Free(pItem);
+ pItem = pPrevItem;
+ }
+ m_pFront = VMA_NULL;
+ m_pBack = VMA_NULL;
+ m_Count = 0;
+ }
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::PushBack()
+{
+ ItemType* const pNewItem = m_ItemAllocator.Alloc();
+ pNewItem->pNext = VMA_NULL;
+ if(IsEmpty())
+ {
+ pNewItem->pPrev = VMA_NULL;
+ m_pFront = pNewItem;
+ m_pBack = pNewItem;
+ m_Count = 1;
+ }
+ else
+ {
+ pNewItem->pPrev = m_pBack;
+ m_pBack->pNext = pNewItem;
+ m_pBack = pNewItem;
+ ++m_Count;
+ }
+ return pNewItem;
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::PushFront()
+{
+ ItemType* const pNewItem = m_ItemAllocator.Alloc();
+ pNewItem->pPrev = VMA_NULL;
+ if(IsEmpty())
+ {
+ pNewItem->pNext = VMA_NULL;
+ m_pFront = pNewItem;
+ m_pBack = pNewItem;
+ m_Count = 1;
+ }
+ else
+ {
+ pNewItem->pNext = m_pFront;
+ m_pFront->pPrev = pNewItem;
+ m_pFront = pNewItem;
+ ++m_Count;
+ }
+ return pNewItem;
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::PushBack(const T& value)
+{
+ ItemType* const pNewItem = PushBack();
+ pNewItem->Value = value;
+ return pNewItem;
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::PushFront(const T& value)
+{
+ ItemType* const pNewItem = PushFront();
+ pNewItem->Value = value;
+ return pNewItem;
+}
+
+template<typename T>
+void VmaRawList<T>::PopBack()
+{
+ VMA_HEAVY_ASSERT(m_Count > 0);
+ ItemType* const pBackItem = m_pBack;
+ ItemType* const pPrevItem = pBackItem->pPrev;
+ if(pPrevItem != VMA_NULL)
+ {
+ pPrevItem->pNext = VMA_NULL;
+ }
+ m_pBack = pPrevItem;
+ m_ItemAllocator.Free(pBackItem);
+ --m_Count;
+}
+
+template<typename T>
+void VmaRawList<T>::PopFront()
+{
+ VMA_HEAVY_ASSERT(m_Count > 0);
+ ItemType* const pFrontItem = m_pFront;
+ ItemType* const pNextItem = pFrontItem->pNext;
+ if(pNextItem != VMA_NULL)
+ {
+ pNextItem->pPrev = VMA_NULL;
+ }
+ m_pFront = pNextItem;
+ m_ItemAllocator.Free(pFrontItem);
+ --m_Count;
+}
+
+template<typename T>
+void VmaRawList<T>::Remove(ItemType* pItem)
+{
+ VMA_HEAVY_ASSERT(pItem != VMA_NULL);
+ VMA_HEAVY_ASSERT(m_Count > 0);
+
+ if(pItem->pPrev != VMA_NULL)
+ {
+ pItem->pPrev->pNext = pItem->pNext;
+ }
+ else
+ {
+ VMA_HEAVY_ASSERT(m_pFront == pItem);
+ m_pFront = pItem->pNext;
+ }
+
+ if(pItem->pNext != VMA_NULL)
+ {
+ pItem->pNext->pPrev = pItem->pPrev;
+ }
+ else
+ {
+ VMA_HEAVY_ASSERT(m_pBack == pItem);
+ m_pBack = pItem->pPrev;
+ }
+
+ m_ItemAllocator.Free(pItem);
+ --m_Count;
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem)
+{
+ if(pItem != VMA_NULL)
+ {
+ ItemType* const prevItem = pItem->pPrev;
+ ItemType* const newItem = m_ItemAllocator.Alloc();
+ newItem->pPrev = prevItem;
+ newItem->pNext = pItem;
+ pItem->pPrev = newItem;
+ if(prevItem != VMA_NULL)
+ {
+ prevItem->pNext = newItem;
+ }
+ else
+ {
+ VMA_HEAVY_ASSERT(m_pFront == pItem);
+ m_pFront = newItem;
+ }
+ ++m_Count;
+ return newItem;
+ }
+ else
+ return PushBack();
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem)
+{
+ if(pItem != VMA_NULL)
+ {
+ ItemType* const nextItem = pItem->pNext;
+ ItemType* const newItem = m_ItemAllocator.Alloc();
+ newItem->pNext = nextItem;
+ newItem->pPrev = pItem;
+ pItem->pNext = newItem;
+ if(nextItem != VMA_NULL)
+ {
+ nextItem->pPrev = newItem;
+ }
+ else
+ {
+ VMA_HEAVY_ASSERT(m_pBack == pItem);
+ m_pBack = newItem;
+ }
+ ++m_Count;
+ return newItem;
+ }
+ else
+ return PushFront();
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem, const T& value)
+{
+ ItemType* const newItem = InsertBefore(pItem);
+ newItem->Value = value;
+ return newItem;
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem, const T& value)
+{
+ ItemType* const newItem = InsertAfter(pItem);
+ newItem->Value = value;
+ return newItem;
+}
+
+template<typename T, typename AllocatorT>
+class VmaList
+{
+ VMA_CLASS_NO_COPY(VmaList)
+public:
+ class iterator
+ {
+ public:
+ iterator() :
+ m_pList(VMA_NULL),
+ m_pItem(VMA_NULL)
+ {
+ }
+
+ T& operator*() const
+ {
+ VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
+ return m_pItem->Value;
+ }
+ T* operator->() const
+ {
+ VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
+ return &m_pItem->Value;
+ }
+
+ iterator& operator++()
+ {
+ VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
+ m_pItem = m_pItem->pNext;
+ return *this;
+ }
+ iterator& operator--()
+ {
+ if(m_pItem != VMA_NULL)
+ {
+ m_pItem = m_pItem->pPrev;
+ }
+ else
+ {
+ VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
+ m_pItem = m_pList->Back();
+ }
+ return *this;
+ }
+
+ iterator operator++(int)
+ {
+ iterator result = *this;
+ ++*this;
+ return result;
+ }
+ iterator operator--(int)
+ {
+ iterator result = *this;
+ --*this;
+ return result;
+ }
+
+ bool operator==(const iterator& rhs) const
+ {
+ VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
+ return m_pItem == rhs.m_pItem;
+ }
+ bool operator!=(const iterator& rhs) const
+ {
+ VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
+ return m_pItem != rhs.m_pItem;
+ }
+
+ private:
+ VmaRawList<T>* m_pList;
+ VmaListItem<T>* m_pItem;
+
+ iterator(VmaRawList<T>* pList, VmaListItem<T>* pItem) :
+ m_pList(pList),
+ m_pItem(pItem)
+ {
+ }
+
+ friend class VmaList<T, AllocatorT>;
+ };
+
+ class const_iterator
+ {
+ public:
+ const_iterator() :
+ m_pList(VMA_NULL),
+ m_pItem(VMA_NULL)
+ {
+ }
+
+ const_iterator(const iterator& src) :
+ m_pList(src.m_pList),
+ m_pItem(src.m_pItem)
+ {
+ }
+
+ const T& operator*() const
+ {
+ VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
+ return m_pItem->Value;
+ }
+ const T* operator->() const
+ {
+ VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
+ return &m_pItem->Value;
+ }
+
+ const_iterator& operator++()
+ {
+ VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
+ m_pItem = m_pItem->pNext;
+ return *this;
+ }
+ const_iterator& operator--()
+ {
+ if(m_pItem != VMA_NULL)
+ {
+ m_pItem = m_pItem->pPrev;
+ }
+ else
+ {
+ VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
+ m_pItem = m_pList->Back();
+ }
+ return *this;
+ }
+
+ const_iterator operator++(int)
+ {
+ const_iterator result = *this;
+ ++*this;
+ return result;
+ }
+ const_iterator operator--(int)
+ {
+ const_iterator result = *this;
+ --*this;
+ return result;
+ }
+
+ bool operator==(const const_iterator& rhs) const
+ {
+ VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
+ return m_pItem == rhs.m_pItem;
+ }
+ bool operator!=(const const_iterator& rhs) const
+ {
+ VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
+ return m_pItem != rhs.m_pItem;
+ }
+
+ private:
+ const_iterator(const VmaRawList<T>* pList, const VmaListItem<T>* pItem) :
+ m_pList(pList),
+ m_pItem(pItem)
+ {
+ }
+
+ const VmaRawList<T>* m_pList;
+ const VmaListItem<T>* m_pItem;
+
+ friend class VmaList<T, AllocatorT>;
+ };
+
+ VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) { }
+
+ bool empty() const { return m_RawList.IsEmpty(); }
+ size_t size() const { return m_RawList.GetCount(); }
+
+ iterator begin() { return iterator(&m_RawList, m_RawList.Front()); }
+ iterator end() { return iterator(&m_RawList, VMA_NULL); }
+
+ const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); }
+ const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); }
+
+ void clear() { m_RawList.Clear(); }
+ void push_back(const T& value) { m_RawList.PushBack(value); }
+ void erase(iterator it) { m_RawList.Remove(it.m_pItem); }
+ iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); }
+
+private:
+ VmaRawList<T> m_RawList;
+};
+
+#endif // #if VMA_USE_STL_LIST
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaMap
+
+// Unused in this version.
+#if 0
+
+#if VMA_USE_STL_UNORDERED_MAP
+
+#define VmaPair std::pair
+
+#define VMA_MAP_TYPE(KeyT, ValueT) \
+ std::unordered_map< KeyT, ValueT, std::hash<KeyT>, std::equal_to<KeyT>, VmaStlAllocator< std::pair<KeyT, ValueT> > >
+
+#else // #if VMA_USE_STL_UNORDERED_MAP
+
+template<typename T1, typename T2>
+struct VmaPair
+{
+ T1 first;
+ T2 second;
+
+ VmaPair() : first(), second() { }
+ VmaPair(const T1& firstSrc, const T2& secondSrc) : first(firstSrc), second(secondSrc) { }
+};
+
+/* Class compatible with subset of interface of std::unordered_map.
+KeyT, ValueT must be POD because they will be stored in VmaVector.
+*/
+template<typename KeyT, typename ValueT>
+class VmaMap
+{
+public:
+ typedef VmaPair<KeyT, ValueT> PairType;
+ typedef PairType* iterator;
+
+ VmaMap(const VmaStlAllocator<PairType>& allocator) : m_Vector(allocator) { }
+
+ iterator begin() { return m_Vector.begin(); }
+ iterator end() { return m_Vector.end(); }
+
+ void insert(const PairType& pair);
+ iterator find(const KeyT& key);
+ void erase(iterator it);
+
+private:
+ VmaVector< PairType, VmaStlAllocator<PairType> > m_Vector;
+};
+
+#define VMA_MAP_TYPE(KeyT, ValueT) VmaMap<KeyT, ValueT>
+
+template<typename FirstT, typename SecondT>
+struct VmaPairFirstLess
+{
+ bool operator()(const VmaPair<FirstT, SecondT>& lhs, const VmaPair<FirstT, SecondT>& rhs) const
+ {
+ return lhs.first < rhs.first;
+ }
+ bool operator()(const VmaPair<FirstT, SecondT>& lhs, const FirstT& rhsFirst) const
+ {
+ return lhs.first < rhsFirst;
+ }
+};
+
+template<typename KeyT, typename ValueT>
+void VmaMap<KeyT, ValueT>::insert(const PairType& pair)
+{
+ const size_t indexToInsert = VmaBinaryFindFirstNotLess(
+ m_Vector.data(),
+ m_Vector.data() + m_Vector.size(),
+ pair,
+ VmaPairFirstLess<KeyT, ValueT>()) - m_Vector.data();
+ VmaVectorInsert(m_Vector, indexToInsert, pair);
+}
+
+template<typename KeyT, typename ValueT>
+VmaPair<KeyT, ValueT>* VmaMap<KeyT, ValueT>::find(const KeyT& key)
+{
+ PairType* it = VmaBinaryFindFirstNotLess(
+ m_Vector.data(),
+ m_Vector.data() + m_Vector.size(),
+ key,
+ VmaPairFirstLess<KeyT, ValueT>());
+ if((it != m_Vector.end()) && (it->first == key))
+ {
+ return it;
+ }
+ else
+ {
+ return m_Vector.end();
+ }
+}
+
+template<typename KeyT, typename ValueT>
+void VmaMap<KeyT, ValueT>::erase(iterator it)
+{
+ VmaVectorRemove(m_Vector, it - m_Vector.begin());
+}
+
+#endif // #if VMA_USE_STL_UNORDERED_MAP
+
+#endif // #if 0
+
+////////////////////////////////////////////////////////////////////////////////
+
+class VmaDeviceMemoryBlock;
+
+enum VMA_CACHE_OPERATION { VMA_CACHE_FLUSH, VMA_CACHE_INVALIDATE };
+
+struct VmaAllocation_T
+{
+private:
+ static const uint8_t MAP_COUNT_FLAG_PERSISTENT_MAP = 0x80;
+
+ enum FLAGS
+ {
+ FLAG_USER_DATA_STRING = 0x01,
+ };
+
+public:
+ enum ALLOCATION_TYPE
+ {
+ ALLOCATION_TYPE_NONE,
+ ALLOCATION_TYPE_BLOCK,
+ ALLOCATION_TYPE_DEDICATED,
+ };
+
+ /*
+ This struct is allocated using VmaPoolAllocator.
+ */
+
+ void Ctor(uint32_t currentFrameIndex, bool userDataString)
+ {
+ m_Alignment = 1;
+ m_Size = 0;
+ m_pUserData = VMA_NULL;
+ m_LastUseFrameIndex = currentFrameIndex;
+ m_Type = (uint8_t)ALLOCATION_TYPE_NONE;
+ m_SuballocationType = (uint8_t)VMA_SUBALLOCATION_TYPE_UNKNOWN;
+ m_MapCount = 0;
+ m_Flags = userDataString ? (uint8_t)FLAG_USER_DATA_STRING : 0;
+
+#if VMA_STATS_STRING_ENABLED
+ m_CreationFrameIndex = currentFrameIndex;
+ m_BufferImageUsage = 0;
+#endif
+ }
+
+ void Dtor()
+ {
+ VMA_ASSERT((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) == 0 && "Allocation was not unmapped before destruction.");
+
+ // Check if owned string was freed.
+ VMA_ASSERT(m_pUserData == VMA_NULL);
+ }
+
+ void InitBlockAllocation(
+ VmaDeviceMemoryBlock* block,
+ VkDeviceSize offset,
+ VkDeviceSize alignment,
+ VkDeviceSize size,
+ VmaSuballocationType suballocationType,
+ bool mapped,
+ bool canBecomeLost)
+ {
+ VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
+ VMA_ASSERT(block != VMA_NULL);
+ m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK;
+ m_Alignment = alignment;
+ m_Size = size;
+ m_MapCount = mapped ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0;
+ m_SuballocationType = (uint8_t)suballocationType;
+ m_BlockAllocation.m_Block = block;
+ m_BlockAllocation.m_Offset = offset;
+ m_BlockAllocation.m_CanBecomeLost = canBecomeLost;
+ }
+
+ void InitLost()
+ {
+ VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
+ VMA_ASSERT(m_LastUseFrameIndex.load() == VMA_FRAME_INDEX_LOST);
+ m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK;
+ m_BlockAllocation.m_Block = VMA_NULL;
+ m_BlockAllocation.m_Offset = 0;
+ m_BlockAllocation.m_CanBecomeLost = true;
+ }
+
+ void ChangeBlockAllocation(
+ VmaAllocator hAllocator,
+ VmaDeviceMemoryBlock* block,
+ VkDeviceSize offset);
+
+ void ChangeOffset(VkDeviceSize newOffset);
+
+ // pMappedData not null means allocation is created with MAPPED flag.
+ void InitDedicatedAllocation(
+ uint32_t memoryTypeIndex,
+ VkDeviceMemory hMemory,
+ VmaSuballocationType suballocationType,
+ void* pMappedData,
+ VkDeviceSize size)
+ {
+ VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
+ VMA_ASSERT(hMemory != VK_NULL_HANDLE);
+ m_Type = (uint8_t)ALLOCATION_TYPE_DEDICATED;
+ m_Alignment = 0;
+ m_Size = size;
+ m_SuballocationType = (uint8_t)suballocationType;
+ m_MapCount = (pMappedData != VMA_NULL) ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0;
+ m_DedicatedAllocation.m_MemoryTypeIndex = memoryTypeIndex;
+ m_DedicatedAllocation.m_hMemory = hMemory;
+ m_DedicatedAllocation.m_pMappedData = pMappedData;
+ }
+
+ ALLOCATION_TYPE GetType() const { return (ALLOCATION_TYPE)m_Type; }
+ VkDeviceSize GetAlignment() const { return m_Alignment; }
+ VkDeviceSize GetSize() const { return m_Size; }
+ bool IsUserDataString() const { return (m_Flags & FLAG_USER_DATA_STRING) != 0; }
+ void* GetUserData() const { return m_pUserData; }
+ void SetUserData(VmaAllocator hAllocator, void* pUserData);
+ VmaSuballocationType GetSuballocationType() const { return (VmaSuballocationType)m_SuballocationType; }
+
+ VmaDeviceMemoryBlock* GetBlock() const
+ {
+ VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
+ return m_BlockAllocation.m_Block;
+ }
+ VkDeviceSize GetOffset() const;
+ VkDeviceMemory GetMemory() const;
+ uint32_t GetMemoryTypeIndex() const;
+ bool IsPersistentMap() const { return (m_MapCount & MAP_COUNT_FLAG_PERSISTENT_MAP) != 0; }
+ void* GetMappedData() const;
+ bool CanBecomeLost() const;
+
+ uint32_t GetLastUseFrameIndex() const
+ {
+ return m_LastUseFrameIndex.load();
+ }
+ bool CompareExchangeLastUseFrameIndex(uint32_t& expected, uint32_t desired)
+ {
+ return m_LastUseFrameIndex.compare_exchange_weak(expected, desired);
+ }
+ /*
+ - If hAllocation.LastUseFrameIndex + frameInUseCount < allocator.CurrentFrameIndex,
+ makes it lost by setting LastUseFrameIndex = VMA_FRAME_INDEX_LOST and returns true.
+ - Else, returns false.
+
+ If hAllocation is already lost, assert - you should not call it then.
+ If hAllocation was not created with CAN_BECOME_LOST_BIT, assert.
+ */
+ bool MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
+
+ void DedicatedAllocCalcStatsInfo(VmaStatInfo& outInfo)
+ {
+ VMA_ASSERT(m_Type == ALLOCATION_TYPE_DEDICATED);
+ outInfo.blockCount = 1;
+ outInfo.allocationCount = 1;
+ outInfo.unusedRangeCount = 0;
+ outInfo.usedBytes = m_Size;
+ outInfo.unusedBytes = 0;
+ outInfo.allocationSizeMin = outInfo.allocationSizeMax = m_Size;
+ outInfo.unusedRangeSizeMin = UINT64_MAX;
+ outInfo.unusedRangeSizeMax = 0;
+ }
+
+ void BlockAllocMap();
+ void BlockAllocUnmap();
+ VkResult DedicatedAllocMap(VmaAllocator hAllocator, void** ppData);
+ void DedicatedAllocUnmap(VmaAllocator hAllocator);
+
+#if VMA_STATS_STRING_ENABLED
+ uint32_t GetCreationFrameIndex() const { return m_CreationFrameIndex; }
+ uint32_t GetBufferImageUsage() const { return m_BufferImageUsage; }
+
+ void InitBufferImageUsage(uint32_t bufferImageUsage)
+ {
+ VMA_ASSERT(m_BufferImageUsage == 0);
+ m_BufferImageUsage = bufferImageUsage;
+ }
+
+ void PrintParameters(class VmaJsonWriter& json) const;
+#endif
+
+private:
+ VkDeviceSize m_Alignment;
+ VkDeviceSize m_Size;
+ void* m_pUserData;
+ VMA_ATOMIC_UINT32 m_LastUseFrameIndex;
+ uint8_t m_Type; // ALLOCATION_TYPE
+ uint8_t m_SuballocationType; // VmaSuballocationType
+ // Bit 0x80 is set when allocation was created with VMA_ALLOCATION_CREATE_MAPPED_BIT.
+ // Bits with mask 0x7F are reference counter for vmaMapMemory()/vmaUnmapMemory().
+ uint8_t m_MapCount;
+ uint8_t m_Flags; // enum FLAGS
+
+ // Allocation out of VmaDeviceMemoryBlock.
+ struct BlockAllocation
+ {
+ VmaDeviceMemoryBlock* m_Block;
+ VkDeviceSize m_Offset;
+ bool m_CanBecomeLost;
+ };
+
+ // Allocation for an object that has its own private VkDeviceMemory.
+ struct DedicatedAllocation
+ {
+ uint32_t m_MemoryTypeIndex;
+ VkDeviceMemory m_hMemory;
+ void* m_pMappedData; // Not null means memory is mapped.
+ };
+
+ union
+ {
+ // Allocation out of VmaDeviceMemoryBlock.
+ BlockAllocation m_BlockAllocation;
+ // Allocation for an object that has its own private VkDeviceMemory.
+ DedicatedAllocation m_DedicatedAllocation;
+ };
+
+#if VMA_STATS_STRING_ENABLED
+ uint32_t m_CreationFrameIndex;
+ uint32_t m_BufferImageUsage; // 0 if unknown.
+#endif
+
+ void FreeUserDataString(VmaAllocator hAllocator);
+};
+
+/*
+Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as
+allocated memory block or free.
+*/
+struct VmaSuballocation
+{
+ VkDeviceSize offset;
+ VkDeviceSize size;
+ VmaAllocation hAllocation;
+ VmaSuballocationType type;
+};
+
+// Comparator for offsets.
+struct VmaSuballocationOffsetLess
+{
+ bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const
+ {
+ return lhs.offset < rhs.offset;
+ }
+};
+struct VmaSuballocationOffsetGreater
+{
+ bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const
+ {
+ return lhs.offset > rhs.offset;
+ }
+};
+
+typedef VmaList< VmaSuballocation, VmaStlAllocator<VmaSuballocation> > VmaSuballocationList;
+
+// Cost of one additional allocation lost, as equivalent in bytes.
+static const VkDeviceSize VMA_LOST_ALLOCATION_COST = 1048576;
+
+enum class VmaAllocationRequestType
+{
+ Normal,
+ // Used by "Linear" algorithm.
+ UpperAddress,
+ EndOf1st,
+ EndOf2nd,
+};
+
+/*
+Parameters of planned allocation inside a VmaDeviceMemoryBlock.
+
+If canMakeOtherLost was false:
+- item points to a FREE suballocation.
+- itemsToMakeLostCount is 0.
+
+If canMakeOtherLost was true:
+- item points to first of sequence of suballocations, which are either FREE,
+ or point to VmaAllocations that can become lost.
+- itemsToMakeLostCount is the number of VmaAllocations that need to be made lost for
+ the requested allocation to succeed.
+*/
+struct VmaAllocationRequest
+{
+ VkDeviceSize offset;
+ VkDeviceSize sumFreeSize; // Sum size of free items that overlap with proposed allocation.
+ VkDeviceSize sumItemSize; // Sum size of items to make lost that overlap with proposed allocation.
+ VmaSuballocationList::iterator item;
+ size_t itemsToMakeLostCount;
+ void* customData;
+ VmaAllocationRequestType type;
+
+ VkDeviceSize CalcCost() const
+ {
+ return sumItemSize + itemsToMakeLostCount * VMA_LOST_ALLOCATION_COST;
+ }
+};
+
+/*
+Data structure used for bookkeeping of allocations and unused ranges of memory
+in a single VkDeviceMemory block.
+*/
+class VmaBlockMetadata
+{
+public:
+ VmaBlockMetadata(VmaAllocator hAllocator);
+ virtual ~VmaBlockMetadata() { }
+ virtual void Init(VkDeviceSize size) { m_Size = size; }
+
+ // Validates all data structures inside this object. If not valid, returns false.
+ virtual bool Validate() const = 0;
+ VkDeviceSize GetSize() const { return m_Size; }
+ virtual size_t GetAllocationCount() const = 0;
+ virtual VkDeviceSize GetSumFreeSize() const = 0;
+ virtual VkDeviceSize GetUnusedRangeSizeMax() const = 0;
+ // Returns true if this block is empty - contains only single free suballocation.
+ virtual bool IsEmpty() const = 0;
+
+ virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const = 0;
+ // Shouldn't modify blockCount.
+ virtual void AddPoolStats(VmaPoolStats& inoutStats) const = 0;
+
+#if VMA_STATS_STRING_ENABLED
+ virtual void PrintDetailedMap(class VmaJsonWriter& json) const = 0;
+#endif
+
+ // Tries to find a place for suballocation with given parameters inside this block.
+ // If succeeded, fills pAllocationRequest and returns true.
+ // If failed, returns false.
+ virtual bool CreateAllocationRequest(
+ uint32_t currentFrameIndex,
+ uint32_t frameInUseCount,
+ VkDeviceSize bufferImageGranularity,
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ bool upperAddress,
+ VmaSuballocationType allocType,
+ bool canMakeOtherLost,
+ // Always one of VMA_ALLOCATION_CREATE_STRATEGY_* or VMA_ALLOCATION_INTERNAL_STRATEGY_* flags.
+ uint32_t strategy,
+ VmaAllocationRequest* pAllocationRequest) = 0;
+
+ virtual bool MakeRequestedAllocationsLost(
+ uint32_t currentFrameIndex,
+ uint32_t frameInUseCount,
+ VmaAllocationRequest* pAllocationRequest) = 0;
+
+ virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) = 0;
+
+ virtual VkResult CheckCorruption(const void* pBlockData) = 0;
+
+ // Makes actual allocation based on request. Request must already be checked and valid.
+ virtual void Alloc(
+ const VmaAllocationRequest& request,
+ VmaSuballocationType type,
+ VkDeviceSize allocSize,
+ VmaAllocation hAllocation) = 0;
+
+ // Frees suballocation assigned to given memory region.
+ virtual void Free(const VmaAllocation allocation) = 0;
+ virtual void FreeAtOffset(VkDeviceSize offset) = 0;
+
+protected:
+ const VkAllocationCallbacks* GetAllocationCallbacks() const { return m_pAllocationCallbacks; }
+
+#if VMA_STATS_STRING_ENABLED
+ void PrintDetailedMap_Begin(class VmaJsonWriter& json,
+ VkDeviceSize unusedBytes,
+ size_t allocationCount,
+ size_t unusedRangeCount) const;
+ void PrintDetailedMap_Allocation(class VmaJsonWriter& json,
+ VkDeviceSize offset,
+ VmaAllocation hAllocation) const;
+ void PrintDetailedMap_UnusedRange(class VmaJsonWriter& json,
+ VkDeviceSize offset,
+ VkDeviceSize size) const;
+ void PrintDetailedMap_End(class VmaJsonWriter& json) const;
+#endif
+
+private:
+ VkDeviceSize m_Size;
+ const VkAllocationCallbacks* m_pAllocationCallbacks;
+};
+
+#define VMA_VALIDATE(cond) do { if(!(cond)) { \
+ VMA_ASSERT(0 && "Validation failed: " #cond); \
+ return false; \
+ } } while(false)
+
+class VmaBlockMetadata_Generic : public VmaBlockMetadata
+{
+ VMA_CLASS_NO_COPY(VmaBlockMetadata_Generic)
+public:
+ VmaBlockMetadata_Generic(VmaAllocator hAllocator);
+ virtual ~VmaBlockMetadata_Generic();
+ virtual void Init(VkDeviceSize size);
+
+ virtual bool Validate() const;
+ virtual size_t GetAllocationCount() const { return m_Suballocations.size() - m_FreeCount; }
+ virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; }
+ virtual VkDeviceSize GetUnusedRangeSizeMax() const;
+ virtual bool IsEmpty() const;
+
+ virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const;
+ virtual void AddPoolStats(VmaPoolStats& inoutStats) const;
+
+#if VMA_STATS_STRING_ENABLED
+ virtual void PrintDetailedMap(class VmaJsonWriter& json) const;
+#endif
+
+ virtual bool CreateAllocationRequest(
+ uint32_t currentFrameIndex,
+ uint32_t frameInUseCount,
+ VkDeviceSize bufferImageGranularity,
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ bool upperAddress,
+ VmaSuballocationType allocType,
+ bool canMakeOtherLost,
+ uint32_t strategy,
+ VmaAllocationRequest* pAllocationRequest);
+
+ virtual bool MakeRequestedAllocationsLost(
+ uint32_t currentFrameIndex,
+ uint32_t frameInUseCount,
+ VmaAllocationRequest* pAllocationRequest);
+
+ virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
+
+ virtual VkResult CheckCorruption(const void* pBlockData);
+
+ virtual void Alloc(
+ const VmaAllocationRequest& request,
+ VmaSuballocationType type,
+ VkDeviceSize allocSize,
+ VmaAllocation hAllocation);
+
+ virtual void Free(const VmaAllocation allocation);
+ virtual void FreeAtOffset(VkDeviceSize offset);
+
+ ////////////////////////////////////////////////////////////////////////////////
+ // For defragmentation
+
+ bool IsBufferImageGranularityConflictPossible(
+ VkDeviceSize bufferImageGranularity,
+ VmaSuballocationType& inOutPrevSuballocType) const;
+
+private:
+ friend class VmaDefragmentationAlgorithm_Generic;
+ friend class VmaDefragmentationAlgorithm_Fast;
+
+ uint32_t m_FreeCount;
+ VkDeviceSize m_SumFreeSize;
+ VmaSuballocationList m_Suballocations;
+ // Suballocations that are free and have size greater than certain threshold.
+ // Sorted by size, ascending.
+ VmaVector< VmaSuballocationList::iterator, VmaStlAllocator< VmaSuballocationList::iterator > > m_FreeSuballocationsBySize;
+
+ bool ValidateFreeSuballocationList() const;
+
+ // Checks if requested suballocation with given parameters can be placed in given pFreeSuballocItem.
+ // If yes, fills pOffset and returns true. If no, returns false.
+ bool CheckAllocation(
+ uint32_t currentFrameIndex,
+ uint32_t frameInUseCount,
+ VkDeviceSize bufferImageGranularity,
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ VmaSuballocationType allocType,
+ VmaSuballocationList::const_iterator suballocItem,
+ bool canMakeOtherLost,
+ VkDeviceSize* pOffset,
+ size_t* itemsToMakeLostCount,
+ VkDeviceSize* pSumFreeSize,
+ VkDeviceSize* pSumItemSize) const;
+ // Given free suballocation, it merges it with following one, which must also be free.
+ void MergeFreeWithNext(VmaSuballocationList::iterator item);
+ // Releases given suballocation, making it free.
+ // Merges it with adjacent free suballocations if applicable.
+ // Returns iterator to new free suballocation at this place.
+ VmaSuballocationList::iterator FreeSuballocation(VmaSuballocationList::iterator suballocItem);
+ // Given free suballocation, it inserts it into sorted list of
+ // m_FreeSuballocationsBySize if it's suitable.
+ void RegisterFreeSuballocation(VmaSuballocationList::iterator item);
+ // Given free suballocation, it removes it from sorted list of
+ // m_FreeSuballocationsBySize if it's suitable.
+ void UnregisterFreeSuballocation(VmaSuballocationList::iterator item);
+};
+
+/*
+Allocations and their references in internal data structure look like this:
+
+if(m_2ndVectorMode == SECOND_VECTOR_EMPTY):
+
+ 0 +-------+
+ | |
+ | |
+ | |
+ +-------+
+ | Alloc | 1st[m_1stNullItemsBeginCount]
+ +-------+
+ | Alloc | 1st[m_1stNullItemsBeginCount + 1]
+ +-------+
+ | ... |
+ +-------+
+ | Alloc | 1st[1st.size() - 1]
+ +-------+
+ | |
+ | |
+ | |
+GetSize() +-------+
+
+if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER):
+
+ 0 +-------+
+ | Alloc | 2nd[0]
+ +-------+
+ | Alloc | 2nd[1]
+ +-------+
+ | ... |
+ +-------+
+ | Alloc | 2nd[2nd.size() - 1]
+ +-------+
+ | |
+ | |
+ | |
+ +-------+
+ | Alloc | 1st[m_1stNullItemsBeginCount]
+ +-------+
+ | Alloc | 1st[m_1stNullItemsBeginCount + 1]
+ +-------+
+ | ... |
+ +-------+
+ | Alloc | 1st[1st.size() - 1]
+ +-------+
+ | |
+GetSize() +-------+
+
+if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK):
+
+ 0 +-------+
+ | |
+ | |
+ | |
+ +-------+
+ | Alloc | 1st[m_1stNullItemsBeginCount]
+ +-------+
+ | Alloc | 1st[m_1stNullItemsBeginCount + 1]
+ +-------+
+ | ... |
+ +-------+
+ | Alloc | 1st[1st.size() - 1]
+ +-------+
+ | |
+ | |
+ | |
+ +-------+
+ | Alloc | 2nd[2nd.size() - 1]
+ +-------+
+ | ... |
+ +-------+
+ | Alloc | 2nd[1]
+ +-------+
+ | Alloc | 2nd[0]
+GetSize() +-------+
+
+*/
+class VmaBlockMetadata_Linear : public VmaBlockMetadata
+{
+ VMA_CLASS_NO_COPY(VmaBlockMetadata_Linear)
+public:
+ VmaBlockMetadata_Linear(VmaAllocator hAllocator);
+ virtual ~VmaBlockMetadata_Linear();
+ virtual void Init(VkDeviceSize size);
+
+ virtual bool Validate() const;
+ virtual size_t GetAllocationCount() const;
+ virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; }
+ virtual VkDeviceSize GetUnusedRangeSizeMax() const;
+ virtual bool IsEmpty() const { return GetAllocationCount() == 0; }
+
+ virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const;
+ virtual void AddPoolStats(VmaPoolStats& inoutStats) const;
+
+#if VMA_STATS_STRING_ENABLED
+ virtual void PrintDetailedMap(class VmaJsonWriter& json) const;
+#endif
+
+ virtual bool CreateAllocationRequest(
+ uint32_t currentFrameIndex,
+ uint32_t frameInUseCount,
+ VkDeviceSize bufferImageGranularity,
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ bool upperAddress,
+ VmaSuballocationType allocType,
+ bool canMakeOtherLost,
+ uint32_t strategy,
+ VmaAllocationRequest* pAllocationRequest);
+
+ virtual bool MakeRequestedAllocationsLost(
+ uint32_t currentFrameIndex,
+ uint32_t frameInUseCount,
+ VmaAllocationRequest* pAllocationRequest);
+
+ virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
+
+ virtual VkResult CheckCorruption(const void* pBlockData);
+
+ virtual void Alloc(
+ const VmaAllocationRequest& request,
+ VmaSuballocationType type,
+ VkDeviceSize allocSize,
+ VmaAllocation hAllocation);
+
+ virtual void Free(const VmaAllocation allocation);
+ virtual void FreeAtOffset(VkDeviceSize offset);
+
+private:
+ /*
+ There are two suballocation vectors, used in ping-pong way.
+ The one with index m_1stVectorIndex is called 1st.
+ The one with index (m_1stVectorIndex ^ 1) is called 2nd.
+ 2nd can be non-empty only when 1st is not empty.
+ When 2nd is not empty, m_2ndVectorMode indicates its mode of operation.
+ */
+ typedef VmaVector< VmaSuballocation, VmaStlAllocator<VmaSuballocation> > SuballocationVectorType;
+
+ enum SECOND_VECTOR_MODE
+ {
+ SECOND_VECTOR_EMPTY,
+ /*
+ Suballocations in 2nd vector are created later than the ones in 1st, but they
+ all have smaller offset.
+ */
+ SECOND_VECTOR_RING_BUFFER,
+ /*
+ Suballocations in 2nd vector are upper side of double stack.
+ They all have offsets higher than those in 1st vector.
+ Top of this stack means smaller offsets, but higher indices in this vector.
+ */
+ SECOND_VECTOR_DOUBLE_STACK,
+ };
+
+ VkDeviceSize m_SumFreeSize;
+ SuballocationVectorType m_Suballocations0, m_Suballocations1;
+ uint32_t m_1stVectorIndex;
+ SECOND_VECTOR_MODE m_2ndVectorMode;
+
+ SuballocationVectorType& AccessSuballocations1st() { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; }
+ SuballocationVectorType& AccessSuballocations2nd() { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; }
+ const SuballocationVectorType& AccessSuballocations1st() const { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; }
+ const SuballocationVectorType& AccessSuballocations2nd() const { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; }
+
+ // Number of items in 1st vector with hAllocation = null at the beginning.
+ size_t m_1stNullItemsBeginCount;
+ // Number of other items in 1st vector with hAllocation = null somewhere in the middle.
+ size_t m_1stNullItemsMiddleCount;
+ // Number of items in 2nd vector with hAllocation = null.
+ size_t m_2ndNullItemsCount;
+
+ bool ShouldCompact1st() const;
+ void CleanupAfterFree();
+
+ bool CreateAllocationRequest_LowerAddress(
+ uint32_t currentFrameIndex,
+ uint32_t frameInUseCount,
+ VkDeviceSize bufferImageGranularity,
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ VmaSuballocationType allocType,
+ bool canMakeOtherLost,
+ uint32_t strategy,
+ VmaAllocationRequest* pAllocationRequest);
+ bool CreateAllocationRequest_UpperAddress(
+ uint32_t currentFrameIndex,
+ uint32_t frameInUseCount,
+ VkDeviceSize bufferImageGranularity,
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ VmaSuballocationType allocType,
+ bool canMakeOtherLost,
+ uint32_t strategy,
+ VmaAllocationRequest* pAllocationRequest);
+};
+
+/*
+- GetSize() is the original size of allocated memory block.
+- m_UsableSize is this size aligned down to a power of two.
+ All allocations and calculations happen relative to m_UsableSize.
+- GetUnusableSize() is the difference between them.
+ It is repoted as separate, unused range, not available for allocations.
+
+Node at level 0 has size = m_UsableSize.
+Each next level contains nodes with size 2 times smaller than current level.
+m_LevelCount is the maximum number of levels to use in the current object.
+*/
+class VmaBlockMetadata_Buddy : public VmaBlockMetadata
+{
+ VMA_CLASS_NO_COPY(VmaBlockMetadata_Buddy)
+public:
+ VmaBlockMetadata_Buddy(VmaAllocator hAllocator);
+ virtual ~VmaBlockMetadata_Buddy();
+ virtual void Init(VkDeviceSize size);
+
+ virtual bool Validate() const;
+ virtual size_t GetAllocationCount() const { return m_AllocationCount; }
+ virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize + GetUnusableSize(); }
+ virtual VkDeviceSize GetUnusedRangeSizeMax() const;
+ virtual bool IsEmpty() const { return m_Root->type == Node::TYPE_FREE; }
+
+ virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const;
+ virtual void AddPoolStats(VmaPoolStats& inoutStats) const;
+
+#if VMA_STATS_STRING_ENABLED
+ virtual void PrintDetailedMap(class VmaJsonWriter& json) const;
+#endif
+
+ virtual bool CreateAllocationRequest(
+ uint32_t currentFrameIndex,
+ uint32_t frameInUseCount,
+ VkDeviceSize bufferImageGranularity,
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ bool upperAddress,
+ VmaSuballocationType allocType,
+ bool canMakeOtherLost,
+ uint32_t strategy,
+ VmaAllocationRequest* pAllocationRequest);
+
+ virtual bool MakeRequestedAllocationsLost(
+ uint32_t currentFrameIndex,
+ uint32_t frameInUseCount,
+ VmaAllocationRequest* pAllocationRequest);
+
+ virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
+
+ virtual VkResult CheckCorruption(const void* pBlockData) { return VK_ERROR_FEATURE_NOT_PRESENT; }
+
+ virtual void Alloc(
+ const VmaAllocationRequest& request,
+ VmaSuballocationType type,
+ VkDeviceSize allocSize,
+ VmaAllocation hAllocation);
+
+ virtual void Free(const VmaAllocation allocation) { FreeAtOffset(allocation, allocation->GetOffset()); }
+ virtual void FreeAtOffset(VkDeviceSize offset) { FreeAtOffset(VMA_NULL, offset); }
+
+private:
+ static const VkDeviceSize MIN_NODE_SIZE = 32;
+ static const size_t MAX_LEVELS = 30;
+
+ struct ValidationContext
+ {
+ size_t calculatedAllocationCount;
+ size_t calculatedFreeCount;
+ VkDeviceSize calculatedSumFreeSize;
+
+ ValidationContext() :
+ calculatedAllocationCount(0),
+ calculatedFreeCount(0),
+ calculatedSumFreeSize(0) { }
+ };
+
+ struct Node
+ {
+ VkDeviceSize offset;
+ enum TYPE
+ {
+ TYPE_FREE,
+ TYPE_ALLOCATION,
+ TYPE_SPLIT,
+ TYPE_COUNT
+ } type;
+ Node* parent;
+ Node* buddy;
+
+ union
+ {
+ struct
+ {
+ Node* prev;
+ Node* next;
+ } free;
+ struct
+ {
+ VmaAllocation alloc;
+ } allocation;
+ struct
+ {
+ Node* leftChild;
+ } split;
+ };
+ };
+
+ // Size of the memory block aligned down to a power of two.
+ VkDeviceSize m_UsableSize;
+ uint32_t m_LevelCount;
+
+ Node* m_Root;
+ struct {
+ Node* front;
+ Node* back;
+ } m_FreeList[MAX_LEVELS];
+ // Number of nodes in the tree with type == TYPE_ALLOCATION.
+ size_t m_AllocationCount;
+ // Number of nodes in the tree with type == TYPE_FREE.
+ size_t m_FreeCount;
+ // This includes space wasted due to internal fragmentation. Doesn't include unusable size.
+ VkDeviceSize m_SumFreeSize;
+
+ VkDeviceSize GetUnusableSize() const { return GetSize() - m_UsableSize; }
+ void DeleteNode(Node* node);
+ bool ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const;
+ uint32_t AllocSizeToLevel(VkDeviceSize allocSize) const;
+ inline VkDeviceSize LevelToNodeSize(uint32_t level) const { return m_UsableSize >> level; }
+ // Alloc passed just for validation. Can be null.
+ void FreeAtOffset(VmaAllocation alloc, VkDeviceSize offset);
+ void CalcAllocationStatInfoNode(VmaStatInfo& outInfo, const Node* node, VkDeviceSize levelNodeSize) const;
+ // Adds node to the front of FreeList at given level.
+ // node->type must be FREE.
+ // node->free.prev, next can be undefined.
+ void AddToFreeListFront(uint32_t level, Node* node);
+ // Removes node from FreeList at given level.
+ // node->type must be FREE.
+ // node->free.prev, next stay untouched.
+ void RemoveFromFreeList(uint32_t level, Node* node);
+
+#if VMA_STATS_STRING_ENABLED
+ void PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const;
+#endif
+};
+
+/*
+Represents a single block of device memory (`VkDeviceMemory`) with all the
+data about its regions (aka suballocations, #VmaAllocation), assigned and free.
+
+Thread-safety: This class must be externally synchronized.
+*/
+class VmaDeviceMemoryBlock
+{
+ VMA_CLASS_NO_COPY(VmaDeviceMemoryBlock)
+public:
+ VmaBlockMetadata* m_pMetadata;
+
+ VmaDeviceMemoryBlock(VmaAllocator hAllocator);
+
+ ~VmaDeviceMemoryBlock()
+ {
+ VMA_ASSERT(m_MapCount == 0 && "VkDeviceMemory block is being destroyed while it is still mapped.");
+ VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
+ }
+
+ // Always call after construction.
+ void Init(
+ VmaAllocator hAllocator,
+ VmaPool hParentPool,
+ uint32_t newMemoryTypeIndex,
+ VkDeviceMemory newMemory,
+ VkDeviceSize newSize,
+ uint32_t id,
+ uint32_t algorithm);
+ // Always call before destruction.
+ void Destroy(VmaAllocator allocator);
+
+ VmaPool GetParentPool() const { return m_hParentPool; }
+ VkDeviceMemory GetDeviceMemory() const { return m_hMemory; }
+ uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
+ uint32_t GetId() const { return m_Id; }
+ void* GetMappedData() const { return m_pMappedData; }
+
+ // Validates all data structures inside this object. If not valid, returns false.
+ bool Validate() const;
+
+ VkResult CheckCorruption(VmaAllocator hAllocator);
+
+ // ppData can be null.
+ VkResult Map(VmaAllocator hAllocator, uint32_t count, void** ppData);
+ void Unmap(VmaAllocator hAllocator, uint32_t count);
+
+ VkResult WriteMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize);
+ VkResult ValidateMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize);
+
+ VkResult BindBufferMemory(
+ const VmaAllocator hAllocator,
+ const VmaAllocation hAllocation,
+ VkDeviceSize allocationLocalOffset,
+ VkBuffer hBuffer,
+ const void* pNext);
+ VkResult BindImageMemory(
+ const VmaAllocator hAllocator,
+ const VmaAllocation hAllocation,
+ VkDeviceSize allocationLocalOffset,
+ VkImage hImage,
+ const void* pNext);
+
+private:
+ VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool.
+ uint32_t m_MemoryTypeIndex;
+ uint32_t m_Id;
+ VkDeviceMemory m_hMemory;
+
+ /*
+ Protects access to m_hMemory so it's not used by multiple threads simultaneously, e.g. vkMapMemory, vkBindBufferMemory.
+ Also protects m_MapCount, m_pMappedData.
+ Allocations, deallocations, any change in m_pMetadata is protected by parent's VmaBlockVector::m_Mutex.
+ */
+ VMA_MUTEX m_Mutex;
+ uint32_t m_MapCount;
+ void* m_pMappedData;
+};
+
+struct VmaPointerLess
+{
+ bool operator()(const void* lhs, const void* rhs) const
+ {
+ return lhs < rhs;
+ }
+};
+
+struct VmaDefragmentationMove
+{
+ size_t srcBlockIndex;
+ size_t dstBlockIndex;
+ VkDeviceSize srcOffset;
+ VkDeviceSize dstOffset;
+ VkDeviceSize size;
+};
+
+class VmaDefragmentationAlgorithm;
+
+/*
+Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific
+Vulkan memory type.
+
+Synchronized internally with a mutex.
+*/
+struct VmaBlockVector
+{
+ VMA_CLASS_NO_COPY(VmaBlockVector)
+public:
+ VmaBlockVector(
+ VmaAllocator hAllocator,
+ VmaPool hParentPool,
+ uint32_t memoryTypeIndex,
+ VkDeviceSize preferredBlockSize,
+ size_t minBlockCount,
+ size_t maxBlockCount,
+ VkDeviceSize bufferImageGranularity,
+ uint32_t frameInUseCount,
+ bool isCustomPool,
+ bool explicitBlockSize,
+ uint32_t algorithm);
+ ~VmaBlockVector();
+
+ VkResult CreateMinBlocks();
+
+ VmaPool GetParentPool() const { return m_hParentPool; }
+ uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
+ VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; }
+ VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; }
+ uint32_t GetFrameInUseCount() const { return m_FrameInUseCount; }
+ uint32_t GetAlgorithm() const { return m_Algorithm; }
+
+ void GetPoolStats(VmaPoolStats* pStats);
+
+ bool IsEmpty() const { return m_Blocks.empty(); }
+ bool IsCorruptionDetectionEnabled() const;
+
+ VkResult Allocate(
+ uint32_t currentFrameIndex,
+ VkDeviceSize size,
+ VkDeviceSize alignment,
+ const VmaAllocationCreateInfo& createInfo,
+ VmaSuballocationType suballocType,
+ size_t allocationCount,
+ VmaAllocation* pAllocations);
+
+ void Free(
+ VmaAllocation hAllocation);
+
+ // Adds statistics of this BlockVector to pStats.
+ void AddStats(VmaStats* pStats);
+
+#if VMA_STATS_STRING_ENABLED
+ void PrintDetailedMap(class VmaJsonWriter& json);
+#endif
+
+ void MakePoolAllocationsLost(
+ uint32_t currentFrameIndex,
+ size_t* pLostAllocationCount);
+ VkResult CheckCorruption();
+
+ // Saves results in pCtx->res.
+ void Defragment(
+ class VmaBlockVectorDefragmentationContext* pCtx,
+ VmaDefragmentationStats* pStats,
+ VkDeviceSize& maxCpuBytesToMove, uint32_t& maxCpuAllocationsToMove,
+ VkDeviceSize& maxGpuBytesToMove, uint32_t& maxGpuAllocationsToMove,
+ VkCommandBuffer commandBuffer);
+ void DefragmentationEnd(
+ class VmaBlockVectorDefragmentationContext* pCtx,
+ VmaDefragmentationStats* pStats);
+
+ ////////////////////////////////////////////////////////////////////////////////
+ // To be used only while the m_Mutex is locked. Used during defragmentation.
+
+ size_t GetBlockCount() const { return m_Blocks.size(); }
+ VmaDeviceMemoryBlock* GetBlock(size_t index) const { return m_Blocks[index]; }
+ size_t CalcAllocationCount() const;
+ bool IsBufferImageGranularityConflictPossible() const;
+
+private:
+ friend class VmaDefragmentationAlgorithm_Generic;
+
+ const VmaAllocator m_hAllocator;
+ const VmaPool m_hParentPool;
+ const uint32_t m_MemoryTypeIndex;
+ const VkDeviceSize m_PreferredBlockSize;
+ const size_t m_MinBlockCount;
+ const size_t m_MaxBlockCount;
+ const VkDeviceSize m_BufferImageGranularity;
+ const uint32_t m_FrameInUseCount;
+ const bool m_IsCustomPool;
+ const bool m_ExplicitBlockSize;
+ const uint32_t m_Algorithm;
+ /* There can be at most one allocation that is completely empty - a
+ hysteresis to avoid pessimistic case of alternating creation and destruction
+ of a VkDeviceMemory. */
+ bool m_HasEmptyBlock;
+ VMA_RW_MUTEX m_Mutex;
+ // Incrementally sorted by sumFreeSize, ascending.
+ VmaVector< VmaDeviceMemoryBlock*, VmaStlAllocator<VmaDeviceMemoryBlock*> > m_Blocks;
+ uint32_t m_NextBlockId;
+
+ VkDeviceSize CalcMaxBlockSize() const;
+
+ // Finds and removes given block from vector.
+ void Remove(VmaDeviceMemoryBlock* pBlock);
+
+ // Performs single step in sorting m_Blocks. They may not be fully sorted
+ // after this call.
+ void IncrementallySortBlocks();
+
+ VkResult AllocatePage(
+ uint32_t currentFrameIndex,
+ VkDeviceSize size,
+ VkDeviceSize alignment,
+ const VmaAllocationCreateInfo& createInfo,
+ VmaSuballocationType suballocType,
+ VmaAllocation* pAllocation);
+
+ // To be used only without CAN_MAKE_OTHER_LOST flag.
+ VkResult AllocateFromBlock(
+ VmaDeviceMemoryBlock* pBlock,
+ uint32_t currentFrameIndex,
+ VkDeviceSize size,
+ VkDeviceSize alignment,
+ VmaAllocationCreateFlags allocFlags,
+ void* pUserData,
+ VmaSuballocationType suballocType,
+ uint32_t strategy,
+ VmaAllocation* pAllocation);
+
+ VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex);
+
+ // Saves result to pCtx->res.
+ void ApplyDefragmentationMovesCpu(
+ class VmaBlockVectorDefragmentationContext* pDefragCtx,
+ const VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves);
+ // Saves result to pCtx->res.
+ void ApplyDefragmentationMovesGpu(
+ class VmaBlockVectorDefragmentationContext* pDefragCtx,
+ const VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
+ VkCommandBuffer commandBuffer);
+
+ /*
+ Used during defragmentation. pDefragmentationStats is optional. It's in/out
+ - updated with new data.
+ */
+ void FreeEmptyBlocks(VmaDefragmentationStats* pDefragmentationStats);
+};
+
+struct VmaPool_T
+{
+ VMA_CLASS_NO_COPY(VmaPool_T)
+public:
+ VmaBlockVector m_BlockVector;
+
+ VmaPool_T(
+ VmaAllocator hAllocator,
+ const VmaPoolCreateInfo& createInfo,
+ VkDeviceSize preferredBlockSize);
+ ~VmaPool_T();
+
+ uint32_t GetId() const { return m_Id; }
+ void SetId(uint32_t id) { VMA_ASSERT(m_Id == 0); m_Id = id; }
+
+#if VMA_STATS_STRING_ENABLED
+ //void PrintDetailedMap(class VmaStringBuilder& sb);
+#endif
+
+private:
+ uint32_t m_Id;
+};
+
+/*
+Performs defragmentation:
+
+- Updates `pBlockVector->m_pMetadata`.
+- Updates allocations by calling ChangeBlockAllocation() or ChangeOffset().
+- Does not move actual data, only returns requested moves as `moves`.
+*/
+class VmaDefragmentationAlgorithm
+{
+ VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm)
+public:
+ VmaDefragmentationAlgorithm(
+ VmaAllocator hAllocator,
+ VmaBlockVector* pBlockVector,
+ uint32_t currentFrameIndex) :
+ m_hAllocator(hAllocator),
+ m_pBlockVector(pBlockVector),
+ m_CurrentFrameIndex(currentFrameIndex)
+ {
+ }
+ virtual ~VmaDefragmentationAlgorithm()
+ {
+ }
+
+ virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) = 0;
+ virtual void AddAll() = 0;
+
+ virtual VkResult Defragment(
+ VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
+ VkDeviceSize maxBytesToMove,
+ uint32_t maxAllocationsToMove) = 0;
+
+ virtual VkDeviceSize GetBytesMoved() const = 0;
+ virtual uint32_t GetAllocationsMoved() const = 0;
+
+protected:
+ VmaAllocator const m_hAllocator;
+ VmaBlockVector* const m_pBlockVector;
+ const uint32_t m_CurrentFrameIndex;
+
+ struct AllocationInfo
+ {
+ VmaAllocation m_hAllocation;
+ VkBool32* m_pChanged;
+
+ AllocationInfo() :
+ m_hAllocation(VK_NULL_HANDLE),
+ m_pChanged(VMA_NULL)
+ {
+ }
+ AllocationInfo(VmaAllocation hAlloc, VkBool32* pChanged) :
+ m_hAllocation(hAlloc),
+ m_pChanged(pChanged)
+ {
+ }
+ };
+};
+
+class VmaDefragmentationAlgorithm_Generic : public VmaDefragmentationAlgorithm
+{
+ VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Generic)
+public:
+ VmaDefragmentationAlgorithm_Generic(
+ VmaAllocator hAllocator,
+ VmaBlockVector* pBlockVector,
+ uint32_t currentFrameIndex,
+ bool overlappingMoveSupported);
+ virtual ~VmaDefragmentationAlgorithm_Generic();
+
+ virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged);
+ virtual void AddAll() { m_AllAllocations = true; }
+
+ virtual VkResult Defragment(
+ VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
+ VkDeviceSize maxBytesToMove,
+ uint32_t maxAllocationsToMove);
+
+ virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; }
+ virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; }
+
+private:
+ uint32_t m_AllocationCount;
+ bool m_AllAllocations;
+
+ VkDeviceSize m_BytesMoved;
+ uint32_t m_AllocationsMoved;
+
+ struct AllocationInfoSizeGreater
+ {
+ bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const
+ {
+ return lhs.m_hAllocation->GetSize() > rhs.m_hAllocation->GetSize();
+ }
+ };
+
+ struct AllocationInfoOffsetGreater
+ {
+ bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const
+ {
+ return lhs.m_hAllocation->GetOffset() > rhs.m_hAllocation->GetOffset();
+ }
+ };
+
+ struct BlockInfo
+ {
+ size_t m_OriginalBlockIndex;
+ VmaDeviceMemoryBlock* m_pBlock;
+ bool m_HasNonMovableAllocations;
+ VmaVector< AllocationInfo, VmaStlAllocator<AllocationInfo> > m_Allocations;
+
+ BlockInfo(const VkAllocationCallbacks* pAllocationCallbacks) :
+ m_OriginalBlockIndex(SIZE_MAX),
+ m_pBlock(VMA_NULL),
+ m_HasNonMovableAllocations(true),
+ m_Allocations(pAllocationCallbacks)
+ {
+ }
+
+ void CalcHasNonMovableAllocations()
+ {
+ const size_t blockAllocCount = m_pBlock->m_pMetadata->GetAllocationCount();
+ const size_t defragmentAllocCount = m_Allocations.size();
+ m_HasNonMovableAllocations = blockAllocCount != defragmentAllocCount;
+ }
+
+ void SortAllocationsBySizeDescending()
+ {
+ VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoSizeGreater());
+ }
+
+ void SortAllocationsByOffsetDescending()
+ {
+ VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoOffsetGreater());
+ }
+ };
+
+ struct BlockPointerLess
+ {
+ bool operator()(const BlockInfo* pLhsBlockInfo, const VmaDeviceMemoryBlock* pRhsBlock) const
+ {
+ return pLhsBlockInfo->m_pBlock < pRhsBlock;
+ }
+ bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const
+ {
+ return pLhsBlockInfo->m_pBlock < pRhsBlockInfo->m_pBlock;
+ }
+ };
+
+ // 1. Blocks with some non-movable allocations go first.
+ // 2. Blocks with smaller sumFreeSize go first.
+ struct BlockInfoCompareMoveDestination
+ {
+ bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const
+ {
+ if(pLhsBlockInfo->m_HasNonMovableAllocations && !pRhsBlockInfo->m_HasNonMovableAllocations)
+ {
+ return true;
+ }
+ if(!pLhsBlockInfo->m_HasNonMovableAllocations && pRhsBlockInfo->m_HasNonMovableAllocations)
+ {
+ return false;
+ }
+ if(pLhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize() < pRhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize())
+ {
+ return true;
+ }
+ return false;
+ }
+ };
+
+ typedef VmaVector< BlockInfo*, VmaStlAllocator<BlockInfo*> > BlockInfoVector;
+ BlockInfoVector m_Blocks;
+
+ VkResult DefragmentRound(
+ VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
+ VkDeviceSize maxBytesToMove,
+ uint32_t maxAllocationsToMove);
+
+ size_t CalcBlocksWithNonMovableCount() const;
+
+ static bool MoveMakesSense(
+ size_t dstBlockIndex, VkDeviceSize dstOffset,
+ size_t srcBlockIndex, VkDeviceSize srcOffset);
+};
+
+class VmaDefragmentationAlgorithm_Fast : public VmaDefragmentationAlgorithm
+{
+ VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Fast)
+public:
+ VmaDefragmentationAlgorithm_Fast(
+ VmaAllocator hAllocator,
+ VmaBlockVector* pBlockVector,
+ uint32_t currentFrameIndex,
+ bool overlappingMoveSupported);
+ virtual ~VmaDefragmentationAlgorithm_Fast();
+
+ virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) { ++m_AllocationCount; }
+ virtual void AddAll() { m_AllAllocations = true; }
+
+ virtual VkResult Defragment(
+ VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
+ VkDeviceSize maxBytesToMove,
+ uint32_t maxAllocationsToMove);
+
+ virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; }
+ virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; }
+
+private:
+ struct BlockInfo
+ {
+ size_t origBlockIndex;
+ };
+
+ class FreeSpaceDatabase
+ {
+ public:
+ FreeSpaceDatabase()
+ {
+ FreeSpace s = {};
+ s.blockInfoIndex = SIZE_MAX;
+ for(size_t i = 0; i < MAX_COUNT; ++i)
+ {
+ m_FreeSpaces[i] = s;
+ }
+ }
+
+ void Register(size_t blockInfoIndex, VkDeviceSize offset, VkDeviceSize size)
+ {
+ if(size < VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
+ {
+ return;
+ }
+
+ // Find first invalid or the smallest structure.
+ size_t bestIndex = SIZE_MAX;
+ for(size_t i = 0; i < MAX_COUNT; ++i)
+ {
+ // Empty structure.
+ if(m_FreeSpaces[i].blockInfoIndex == SIZE_MAX)
+ {
+ bestIndex = i;
+ break;
+ }
+ if(m_FreeSpaces[i].size < size &&
+ (bestIndex == SIZE_MAX || m_FreeSpaces[bestIndex].size > m_FreeSpaces[i].size))
+ {
+ bestIndex = i;
+ }
+ }
+
+ if(bestIndex != SIZE_MAX)
+ {
+ m_FreeSpaces[bestIndex].blockInfoIndex = blockInfoIndex;
+ m_FreeSpaces[bestIndex].offset = offset;
+ m_FreeSpaces[bestIndex].size = size;
+ }
+ }
+
+ bool Fetch(VkDeviceSize alignment, VkDeviceSize size,
+ size_t& outBlockInfoIndex, VkDeviceSize& outDstOffset)
+ {
+ size_t bestIndex = SIZE_MAX;
+ VkDeviceSize bestFreeSpaceAfter = 0;
+ for(size_t i = 0; i < MAX_COUNT; ++i)
+ {
+ // Structure is valid.
+ if(m_FreeSpaces[i].blockInfoIndex != SIZE_MAX)
+ {
+ const VkDeviceSize dstOffset = VmaAlignUp(m_FreeSpaces[i].offset, alignment);
+ // Allocation fits into this structure.
+ if(dstOffset + size <= m_FreeSpaces[i].offset + m_FreeSpaces[i].size)
+ {
+ const VkDeviceSize freeSpaceAfter = (m_FreeSpaces[i].offset + m_FreeSpaces[i].size) -
+ (dstOffset + size);
+ if(bestIndex == SIZE_MAX || freeSpaceAfter > bestFreeSpaceAfter)
+ {
+ bestIndex = i;
+ bestFreeSpaceAfter = freeSpaceAfter;
+ }
+ }
+ }
+ }
+
+ if(bestIndex != SIZE_MAX)
+ {
+ outBlockInfoIndex = m_FreeSpaces[bestIndex].blockInfoIndex;
+ outDstOffset = VmaAlignUp(m_FreeSpaces[bestIndex].offset, alignment);
+
+ if(bestFreeSpaceAfter >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
+ {
+ // Leave this structure for remaining empty space.
+ const VkDeviceSize alignmentPlusSize = (outDstOffset - m_FreeSpaces[bestIndex].offset) + size;
+ m_FreeSpaces[bestIndex].offset += alignmentPlusSize;
+ m_FreeSpaces[bestIndex].size -= alignmentPlusSize;
+ }
+ else
+ {
+ // This structure becomes invalid.
+ m_FreeSpaces[bestIndex].blockInfoIndex = SIZE_MAX;
+ }
+
+ return true;
+ }
+
+ return false;
+ }
+
+ private:
+ static const size_t MAX_COUNT = 4;
+
+ struct FreeSpace
+ {
+ size_t blockInfoIndex; // SIZE_MAX means this structure is invalid.
+ VkDeviceSize offset;
+ VkDeviceSize size;
+ } m_FreeSpaces[MAX_COUNT];
+ };
+
+ const bool m_OverlappingMoveSupported;
+
+ uint32_t m_AllocationCount;
+ bool m_AllAllocations;
+
+ VkDeviceSize m_BytesMoved;
+ uint32_t m_AllocationsMoved;
+
+ VmaVector< BlockInfo, VmaStlAllocator<BlockInfo> > m_BlockInfos;
+
+ void PreprocessMetadata();
+ void PostprocessMetadata();
+ void InsertSuballoc(VmaBlockMetadata_Generic* pMetadata, const VmaSuballocation& suballoc);
+};
+
+struct VmaBlockDefragmentationContext
+{
+ enum BLOCK_FLAG
+ {
+ BLOCK_FLAG_USED = 0x00000001,
+ };
+ uint32_t flags;
+ VkBuffer hBuffer;
+};
+
+class VmaBlockVectorDefragmentationContext
+{
+ VMA_CLASS_NO_COPY(VmaBlockVectorDefragmentationContext)
+public:
+ VkResult res;
+ bool mutexLocked;
+ VmaVector< VmaBlockDefragmentationContext, VmaStlAllocator<VmaBlockDefragmentationContext> > blockContexts;
+
+ VmaBlockVectorDefragmentationContext(
+ VmaAllocator hAllocator,
+ VmaPool hCustomPool, // Optional.
+ VmaBlockVector* pBlockVector,
+ uint32_t currFrameIndex);
+ ~VmaBlockVectorDefragmentationContext();
+
+ VmaPool GetCustomPool() const { return m_hCustomPool; }
+ VmaBlockVector* GetBlockVector() const { return m_pBlockVector; }
+ VmaDefragmentationAlgorithm* GetAlgorithm() const { return m_pAlgorithm; }
+
+ void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged);
+ void AddAll() { m_AllAllocations = true; }
+
+ void Begin(bool overlappingMoveSupported);
+
+private:
+ const VmaAllocator m_hAllocator;
+ // Null if not from custom pool.
+ const VmaPool m_hCustomPool;
+ // Redundant, for convenience not to fetch from m_hCustomPool->m_BlockVector or m_hAllocator->m_pBlockVectors.
+ VmaBlockVector* const m_pBlockVector;
+ const uint32_t m_CurrFrameIndex;
+ // Owner of this object.
+ VmaDefragmentationAlgorithm* m_pAlgorithm;
+
+ struct AllocInfo
+ {
+ VmaAllocation hAlloc;
+ VkBool32* pChanged;
+ };
+ // Used between constructor and Begin.
+ VmaVector< AllocInfo, VmaStlAllocator<AllocInfo> > m_Allocations;
+ bool m_AllAllocations;
+};
+
+struct VmaDefragmentationContext_T
+{
+private:
+ VMA_CLASS_NO_COPY(VmaDefragmentationContext_T)
+public:
+ VmaDefragmentationContext_T(
+ VmaAllocator hAllocator,
+ uint32_t currFrameIndex,
+ uint32_t flags,
+ VmaDefragmentationStats* pStats);
+ ~VmaDefragmentationContext_T();
+
+ void AddPools(uint32_t poolCount, VmaPool* pPools);
+ void AddAllocations(
+ uint32_t allocationCount,
+ VmaAllocation* pAllocations,
+ VkBool32* pAllocationsChanged);
+
+ /*
+ Returns:
+ - `VK_SUCCESS` if succeeded and object can be destroyed immediately.
+ - `VK_NOT_READY` if succeeded but the object must remain alive until vmaDefragmentationEnd().
+ - Negative value if error occured and object can be destroyed immediately.
+ */
+ VkResult Defragment(
+ VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove,
+ VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove,
+ VkCommandBuffer commandBuffer, VmaDefragmentationStats* pStats);
+
+private:
+ const VmaAllocator m_hAllocator;
+ const uint32_t m_CurrFrameIndex;
+ const uint32_t m_Flags;
+ VmaDefragmentationStats* const m_pStats;
+ // Owner of these objects.
+ VmaBlockVectorDefragmentationContext* m_DefaultPoolContexts[VK_MAX_MEMORY_TYPES];
+ // Owner of these objects.
+ VmaVector< VmaBlockVectorDefragmentationContext*, VmaStlAllocator<VmaBlockVectorDefragmentationContext*> > m_CustomPoolContexts;
+};
+
+#if VMA_RECORDING_ENABLED
+
+class VmaRecorder
+{
+public:
+ VmaRecorder();
+ VkResult Init(const VmaRecordSettings& settings, bool useMutex);
+ void WriteConfiguration(
+ const VkPhysicalDeviceProperties& devProps,
+ const VkPhysicalDeviceMemoryProperties& memProps,
+ bool dedicatedAllocationExtensionEnabled,
+ bool bindMemory2ExtensionEnabled);
+ ~VmaRecorder();
+
+ void RecordCreateAllocator(uint32_t frameIndex);
+ void RecordDestroyAllocator(uint32_t frameIndex);
+ void RecordCreatePool(uint32_t frameIndex,
+ const VmaPoolCreateInfo& createInfo,
+ VmaPool pool);
+ void RecordDestroyPool(uint32_t frameIndex, VmaPool pool);
+ void RecordAllocateMemory(uint32_t frameIndex,
+ const VkMemoryRequirements& vkMemReq,
+ const VmaAllocationCreateInfo& createInfo,
+ VmaAllocation allocation);
+ void RecordAllocateMemoryPages(uint32_t frameIndex,
+ const VkMemoryRequirements& vkMemReq,
+ const VmaAllocationCreateInfo& createInfo,
+ uint64_t allocationCount,
+ const VmaAllocation* pAllocations);
+ void RecordAllocateMemoryForBuffer(uint32_t frameIndex,
+ const VkMemoryRequirements& vkMemReq,
+ bool requiresDedicatedAllocation,
+ bool prefersDedicatedAllocation,
+ const VmaAllocationCreateInfo& createInfo,
+ VmaAllocation allocation);
+ void RecordAllocateMemoryForImage(uint32_t frameIndex,
+ const VkMemoryRequirements& vkMemReq,
+ bool requiresDedicatedAllocation,
+ bool prefersDedicatedAllocation,
+ const VmaAllocationCreateInfo& createInfo,
+ VmaAllocation allocation);
+ void RecordFreeMemory(uint32_t frameIndex,
+ VmaAllocation allocation);
+ void RecordFreeMemoryPages(uint32_t frameIndex,
+ uint64_t allocationCount,
+ const VmaAllocation* pAllocations);
+ void RecordSetAllocationUserData(uint32_t frameIndex,
+ VmaAllocation allocation,
+ const void* pUserData);
+ void RecordCreateLostAllocation(uint32_t frameIndex,
+ VmaAllocation allocation);
+ void RecordMapMemory(uint32_t frameIndex,
+ VmaAllocation allocation);
+ void RecordUnmapMemory(uint32_t frameIndex,
+ VmaAllocation allocation);
+ void RecordFlushAllocation(uint32_t frameIndex,
+ VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size);
+ void RecordInvalidateAllocation(uint32_t frameIndex,
+ VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size);
+ void RecordCreateBuffer(uint32_t frameIndex,
+ const VkBufferCreateInfo& bufCreateInfo,
+ const VmaAllocationCreateInfo& allocCreateInfo,
+ VmaAllocation allocation);
+ void RecordCreateImage(uint32_t frameIndex,
+ const VkImageCreateInfo& imageCreateInfo,
+ const VmaAllocationCreateInfo& allocCreateInfo,
+ VmaAllocation allocation);
+ void RecordDestroyBuffer(uint32_t frameIndex,
+ VmaAllocation allocation);
+ void RecordDestroyImage(uint32_t frameIndex,
+ VmaAllocation allocation);
+ void RecordTouchAllocation(uint32_t frameIndex,
+ VmaAllocation allocation);
+ void RecordGetAllocationInfo(uint32_t frameIndex,
+ VmaAllocation allocation);
+ void RecordMakePoolAllocationsLost(uint32_t frameIndex,
+ VmaPool pool);
+ void RecordDefragmentationBegin(uint32_t frameIndex,
+ const VmaDefragmentationInfo2& info,
+ VmaDefragmentationContext ctx);
+ void RecordDefragmentationEnd(uint32_t frameIndex,
+ VmaDefragmentationContext ctx);
+
+private:
+ struct CallParams
+ {
+ uint32_t threadId;
+ double time;
+ };
+
+ class UserDataString
+ {
+ public:
+ UserDataString(VmaAllocationCreateFlags allocFlags, const void* pUserData);
+ const char* GetString() const { return m_Str; }
+
+ private:
+ char m_PtrStr[17];
+ const char* m_Str;
+ };
+
+ bool m_UseMutex;
+ VmaRecordFlags m_Flags;
+ FILE* m_File;
+ VMA_MUTEX m_FileMutex;
+ int64_t m_Freq;
+ int64_t m_StartCounter;
+
+ void GetBasicParams(CallParams& outParams);
+
+ // T must be a pointer type, e.g. VmaAllocation, VmaPool.
+ template<typename T>
+ void PrintPointerList(uint64_t count, const T* pItems)
+ {
+ if(count)
+ {
+ fprintf(m_File, "%p", pItems[0]);
+ for(uint64_t i = 1; i < count; ++i)
+ {
+ fprintf(m_File, " %p", pItems[i]);
+ }
+ }
+ }
+
+ void PrintPointerList(uint64_t count, const VmaAllocation* pItems);
+ void Flush();
+};
+
+#endif // #if VMA_RECORDING_ENABLED
+
+/*
+Thread-safe wrapper over VmaPoolAllocator free list, for allocation of VmaAllocation_T objects.
+*/
+class VmaAllocationObjectAllocator
+{
+ VMA_CLASS_NO_COPY(VmaAllocationObjectAllocator)
+public:
+ VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks);
+
+ VmaAllocation Allocate();
+ void Free(VmaAllocation hAlloc);
+
+private:
+ VMA_MUTEX m_Mutex;
+ VmaPoolAllocator<VmaAllocation_T> m_Allocator;
+};
+
+// Main allocator object.
+struct VmaAllocator_T
+{
+ VMA_CLASS_NO_COPY(VmaAllocator_T)
+public:
+ bool m_UseMutex;
+ bool m_UseKhrDedicatedAllocation;
+ bool m_UseKhrBindMemory2;
+ VkDevice m_hDevice;
+ bool m_AllocationCallbacksSpecified;
+ VkAllocationCallbacks m_AllocationCallbacks;
+ VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks;
+ VmaAllocationObjectAllocator m_AllocationObjectAllocator;
+
+ // Number of bytes free out of limit, or VK_WHOLE_SIZE if no limit for that heap.
+ VkDeviceSize m_HeapSizeLimit[VK_MAX_MEMORY_HEAPS];
+ VMA_MUTEX m_HeapSizeLimitMutex;
+
+ VkPhysicalDeviceProperties m_PhysicalDeviceProperties;
+ VkPhysicalDeviceMemoryProperties m_MemProps;
+
+ // Default pools.
+ VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES];
+
+ // Each vector is sorted by memory (handle value).
+ typedef VmaVector< VmaAllocation, VmaStlAllocator<VmaAllocation> > AllocationVectorType;
+ AllocationVectorType* m_pDedicatedAllocations[VK_MAX_MEMORY_TYPES];
+ VMA_RW_MUTEX m_DedicatedAllocationsMutex[VK_MAX_MEMORY_TYPES];
+
+ VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo);
+ VkResult Init(const VmaAllocatorCreateInfo* pCreateInfo);
+ ~VmaAllocator_T();
+
+ const VkAllocationCallbacks* GetAllocationCallbacks() const
+ {
+ return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : 0;
+ }
+ const VmaVulkanFunctions& GetVulkanFunctions() const
+ {
+ return m_VulkanFunctions;
+ }
+
+ VkDeviceSize GetBufferImageGranularity() const
+ {
+ return VMA_MAX(
+ static_cast<VkDeviceSize>(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY),
+ m_PhysicalDeviceProperties.limits.bufferImageGranularity);
+ }
+
+ uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; }
+ uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; }
+
+ uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const
+ {
+ VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount);
+ return m_MemProps.memoryTypes[memTypeIndex].heapIndex;
+ }
+ // True when specific memory type is HOST_VISIBLE but not HOST_COHERENT.
+ bool IsMemoryTypeNonCoherent(uint32_t memTypeIndex) const
+ {
+ return (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) ==
+ VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+ }
+ // Minimum alignment for all allocations in specific memory type.
+ VkDeviceSize GetMemoryTypeMinAlignment(uint32_t memTypeIndex) const
+ {
+ return IsMemoryTypeNonCoherent(memTypeIndex) ?
+ VMA_MAX((VkDeviceSize)VMA_DEBUG_ALIGNMENT, m_PhysicalDeviceProperties.limits.nonCoherentAtomSize) :
+ (VkDeviceSize)VMA_DEBUG_ALIGNMENT;
+ }
+
+ bool IsIntegratedGpu() const
+ {
+ return m_PhysicalDeviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU;
+ }
+
+#if VMA_RECORDING_ENABLED
+ VmaRecorder* GetRecorder() const { return m_pRecorder; }
+#endif
+
+ void GetBufferMemoryRequirements(
+ VkBuffer hBuffer,
+ VkMemoryRequirements& memReq,
+ bool& requiresDedicatedAllocation,
+ bool& prefersDedicatedAllocation) const;
+ void GetImageMemoryRequirements(
+ VkImage hImage,
+ VkMemoryRequirements& memReq,
+ bool& requiresDedicatedAllocation,
+ bool& prefersDedicatedAllocation) const;
+
+ // Main allocation function.
+ VkResult AllocateMemory(
+ const VkMemoryRequirements& vkMemReq,
+ bool requiresDedicatedAllocation,
+ bool prefersDedicatedAllocation,
+ VkBuffer dedicatedBuffer,
+ VkImage dedicatedImage,
+ const VmaAllocationCreateInfo& createInfo,
+ VmaSuballocationType suballocType,
+ size_t allocationCount,
+ VmaAllocation* pAllocations);
+
+ // Main deallocation function.
+ void FreeMemory(
+ size_t allocationCount,
+ const VmaAllocation* pAllocations);
+
+ VkResult ResizeAllocation(
+ const VmaAllocation alloc,
+ VkDeviceSize newSize);
+
+ void CalculateStats(VmaStats* pStats);
+
+#if VMA_STATS_STRING_ENABLED
+ void PrintDetailedMap(class VmaJsonWriter& json);
+#endif
+
+ VkResult DefragmentationBegin(
+ const VmaDefragmentationInfo2& info,
+ VmaDefragmentationStats* pStats,
+ VmaDefragmentationContext* pContext);
+ VkResult DefragmentationEnd(
+ VmaDefragmentationContext context);
+
+ void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo);
+ bool TouchAllocation(VmaAllocation hAllocation);
+
+ VkResult CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool);
+ void DestroyPool(VmaPool pool);
+ void GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats);
+
+ void SetCurrentFrameIndex(uint32_t frameIndex);
+ uint32_t GetCurrentFrameIndex() const { return m_CurrentFrameIndex.load(); }
+
+ void MakePoolAllocationsLost(
+ VmaPool hPool,
+ size_t* pLostAllocationCount);
+ VkResult CheckPoolCorruption(VmaPool hPool);
+ VkResult CheckCorruption(uint32_t memoryTypeBits);
+
+ void CreateLostAllocation(VmaAllocation* pAllocation);
+
+ // Call to Vulkan function vkAllocateMemory with accompanying bookkeeping.
+ VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory);
+ // Call to Vulkan function vkFreeMemory with accompanying bookkeeping.
+ void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory);
+ // Call to Vulkan function vkBindBufferMemory or vkBindBufferMemory2KHR.
+ VkResult BindVulkanBuffer(
+ VkDeviceMemory memory,
+ VkDeviceSize memoryOffset,
+ VkBuffer buffer,
+ const void* pNext);
+ // Call to Vulkan function vkBindImageMemory or vkBindImageMemory2KHR.
+ VkResult BindVulkanImage(
+ VkDeviceMemory memory,
+ VkDeviceSize memoryOffset,
+ VkImage image,
+ const void* pNext);
+
+ VkResult Map(VmaAllocation hAllocation, void** ppData);
+ void Unmap(VmaAllocation hAllocation);
+
+ VkResult BindBufferMemory(
+ VmaAllocation hAllocation,
+ VkDeviceSize allocationLocalOffset,
+ VkBuffer hBuffer,
+ const void* pNext);
+ VkResult BindImageMemory(
+ VmaAllocation hAllocation,
+ VkDeviceSize allocationLocalOffset,
+ VkImage hImage,
+ const void* pNext);
+
+ void FlushOrInvalidateAllocation(
+ VmaAllocation hAllocation,
+ VkDeviceSize offset, VkDeviceSize size,
+ VMA_CACHE_OPERATION op);
+
+ void FillAllocation(const VmaAllocation hAllocation, uint8_t pattern);
+
+ /*
+ Returns bit mask of memory types that can support defragmentation on GPU as
+ they support creation of required buffer for copy operations.
+ */
+ uint32_t GetGpuDefragmentationMemoryTypeBits();
+
+private:
+ VkDeviceSize m_PreferredLargeHeapBlockSize;
+
+ VkPhysicalDevice m_PhysicalDevice;
+ VMA_ATOMIC_UINT32 m_CurrentFrameIndex;
+ VMA_ATOMIC_UINT32 m_GpuDefragmentationMemoryTypeBits; // UINT32_MAX means uninitialized.
+
+ VMA_RW_MUTEX m_PoolsMutex;
+ // Protected by m_PoolsMutex. Sorted by pointer value.
+ VmaVector<VmaPool, VmaStlAllocator<VmaPool> > m_Pools;
+ uint32_t m_NextPoolId;
+
+ VmaVulkanFunctions m_VulkanFunctions;
+
+#if VMA_RECORDING_ENABLED
+ VmaRecorder* m_pRecorder;
+#endif
+
+ void ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions);
+
+ VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex);
+
+ VkResult AllocateMemoryOfType(
+ VkDeviceSize size,
+ VkDeviceSize alignment,
+ bool dedicatedAllocation,
+ VkBuffer dedicatedBuffer,
+ VkImage dedicatedImage,
+ const VmaAllocationCreateInfo& createInfo,
+ uint32_t memTypeIndex,
+ VmaSuballocationType suballocType,
+ size_t allocationCount,
+ VmaAllocation* pAllocations);
+
+ // Helper function only to be used inside AllocateDedicatedMemory.
+ VkResult AllocateDedicatedMemoryPage(
+ VkDeviceSize size,
+ VmaSuballocationType suballocType,
+ uint32_t memTypeIndex,
+ const VkMemoryAllocateInfo& allocInfo,
+ bool map,
+ bool isUserDataString,
+ void* pUserData,
+ VmaAllocation* pAllocation);
+
+ // Allocates and registers new VkDeviceMemory specifically for dedicated allocations.
+ VkResult AllocateDedicatedMemory(
+ VkDeviceSize size,
+ VmaSuballocationType suballocType,
+ uint32_t memTypeIndex,
+ bool map,
+ bool isUserDataString,
+ void* pUserData,
+ VkBuffer dedicatedBuffer,
+ VkImage dedicatedImage,
+ size_t allocationCount,
+ VmaAllocation* pAllocations);
+
+ void FreeDedicatedMemory(VmaAllocation allocation);
+
+ /*
+ Calculates and returns bit mask of memory types that can support defragmentation
+ on GPU as they support creation of required buffer for copy operations.
+ */
+ uint32_t CalculateGpuDefragmentationMemoryTypeBits() const;
+};
+
+////////////////////////////////////////////////////////////////////////////////
+// Memory allocation #2 after VmaAllocator_T definition
+
+static void* VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment)
+{
+ return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment);
+}
+
+static void VmaFree(VmaAllocator hAllocator, void* ptr)
+{
+ VmaFree(&hAllocator->m_AllocationCallbacks, ptr);
+}
+
+template<typename T>
+static T* VmaAllocate(VmaAllocator hAllocator)
+{
+ return (T*)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T));
+}
+
+template<typename T>
+static T* VmaAllocateArray(VmaAllocator hAllocator, size_t count)
+{
+ return (T*)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T));
+}
+
+template<typename T>
+static void vma_delete(VmaAllocator hAllocator, T* ptr)
+{
+ if(ptr != VMA_NULL)
+ {
+ ptr->~T();
+ VmaFree(hAllocator, ptr);
+ }
+}
+
+template<typename T>
+static void vma_delete_array(VmaAllocator hAllocator, T* ptr, size_t count)
+{
+ if(ptr != VMA_NULL)
+ {
+ for(size_t i = count; i--; )
+ ptr[i].~T();
+ VmaFree(hAllocator, ptr);
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// VmaStringBuilder
+
+#if VMA_STATS_STRING_ENABLED
+
+class VmaStringBuilder
+{
+public:
+ VmaStringBuilder(VmaAllocator alloc) : m_Data(VmaStlAllocator<char>(alloc->GetAllocationCallbacks())) { }
+ size_t GetLength() const { return m_Data.size(); }
+ const char* GetData() const { return m_Data.data(); }
+
+ void Add(char ch) { m_Data.push_back(ch); }
+ void Add(const char* pStr);
+ void AddNewLine() { Add('\n'); }
+ void AddNumber(uint32_t num);
+ void AddNumber(uint64_t num);
+ void AddPointer(const void* ptr);
+
+private:
+ VmaVector< char, VmaStlAllocator<char> > m_Data;
+};
+
+void VmaStringBuilder::Add(const char* pStr)
+{
+ const size_t strLen = strlen(pStr);
+ if(strLen > 0)
+ {
+ const size_t oldCount = m_Data.size();
+ m_Data.resize(oldCount + strLen);
+ memcpy(m_Data.data() + oldCount, pStr, strLen);
+ }
+}
+
+void VmaStringBuilder::AddNumber(uint32_t num)
+{
+ char buf[11];
+ VmaUint32ToStr(buf, sizeof(buf), num);
+ Add(buf);
+}
+
+void VmaStringBuilder::AddNumber(uint64_t num)
+{
+ char buf[21];
+ VmaUint64ToStr(buf, sizeof(buf), num);
+ Add(buf);
+}
+
+void VmaStringBuilder::AddPointer(const void* ptr)
+{
+ char buf[21];
+ VmaPtrToStr(buf, sizeof(buf), ptr);
+ Add(buf);
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+////////////////////////////////////////////////////////////////////////////////
+// VmaJsonWriter
+
+#if VMA_STATS_STRING_ENABLED
+
+class VmaJsonWriter
+{
+ VMA_CLASS_NO_COPY(VmaJsonWriter)
+public:
+ VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb);
+ ~VmaJsonWriter();
+
+ void BeginObject(bool singleLine = false);
+ void EndObject();
+
+ void BeginArray(bool singleLine = false);
+ void EndArray();
+
+ void WriteString(const char* pStr);
+ void BeginString(const char* pStr = VMA_NULL);
+ void ContinueString(const char* pStr);
+ void ContinueString(uint32_t n);
+ void ContinueString(uint64_t n);
+ void ContinueString_Pointer(const void* ptr);
+ void EndString(const char* pStr = VMA_NULL);
+
+ void WriteNumber(uint32_t n);
+ void WriteNumber(uint64_t n);
+ void WriteBool(bool b);
+ void WriteNull();
+
+private:
+ static const char* const INDENT;
+
+ enum COLLECTION_TYPE
+ {
+ COLLECTION_TYPE_OBJECT,
+ COLLECTION_TYPE_ARRAY,
+ };
+ struct StackItem
+ {
+ COLLECTION_TYPE type;
+ uint32_t valueCount;
+ bool singleLineMode;
+ };
+
+ VmaStringBuilder& m_SB;
+ VmaVector< StackItem, VmaStlAllocator<StackItem> > m_Stack;
+ bool m_InsideString;
+
+ void BeginValue(bool isString);
+ void WriteIndent(bool oneLess = false);
+};
+
+const char* const VmaJsonWriter::INDENT = " ";
+
+VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb) :
+ m_SB(sb),
+ m_Stack(VmaStlAllocator<StackItem>(pAllocationCallbacks)),
+ m_InsideString(false)
+{
+}
+
+VmaJsonWriter::~VmaJsonWriter()
+{
+ VMA_ASSERT(!m_InsideString);
+ VMA_ASSERT(m_Stack.empty());
+}
+
+void VmaJsonWriter::BeginObject(bool singleLine)
+{
+ VMA_ASSERT(!m_InsideString);
+
+ BeginValue(false);
+ m_SB.Add('{');
+
+ StackItem item;
+ item.type = COLLECTION_TYPE_OBJECT;
+ item.valueCount = 0;
+ item.singleLineMode = singleLine;
+ m_Stack.push_back(item);
+}
+
+void VmaJsonWriter::EndObject()
+{
+ VMA_ASSERT(!m_InsideString);
+
+ WriteIndent(true);
+ m_SB.Add('}');
+
+ VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT);
+ m_Stack.pop_back();
+}
+
+void VmaJsonWriter::BeginArray(bool singleLine)
+{
+ VMA_ASSERT(!m_InsideString);
+
+ BeginValue(false);
+ m_SB.Add('[');
+
+ StackItem item;
+ item.type = COLLECTION_TYPE_ARRAY;
+ item.valueCount = 0;
+ item.singleLineMode = singleLine;
+ m_Stack.push_back(item);
+}
+
+void VmaJsonWriter::EndArray()
+{
+ VMA_ASSERT(!m_InsideString);
+
+ WriteIndent(true);
+ m_SB.Add(']');
+
+ VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY);
+ m_Stack.pop_back();
+}
+
+void VmaJsonWriter::WriteString(const char* pStr)
+{
+ BeginString(pStr);
+ EndString();
+}
+
+void VmaJsonWriter::BeginString(const char* pStr)
+{
+ VMA_ASSERT(!m_InsideString);
+
+ BeginValue(true);
+ m_SB.Add('"');
+ m_InsideString = true;
+ if(pStr != VMA_NULL && pStr[0] != '\0')
+ {
+ ContinueString(pStr);
+ }
+}
+
+void VmaJsonWriter::ContinueString(const char* pStr)
+{
+ VMA_ASSERT(m_InsideString);
+
+ const size_t strLen = strlen(pStr);
+ for(size_t i = 0; i < strLen; ++i)
+ {
+ char ch = pStr[i];
+ if(ch == '\\')
+ {
+ m_SB.Add("\\\\");
+ }
+ else if(ch == '"')
+ {
+ m_SB.Add("\\\"");
+ }
+ else if(ch >= 32)
+ {
+ m_SB.Add(ch);
+ }
+ else switch(ch)
+ {
+ case '\b':
+ m_SB.Add("\\b");
+ break;
+ case '\f':
+ m_SB.Add("\\f");
+ break;
+ case '\n':
+ m_SB.Add("\\n");
+ break;
+ case '\r':
+ m_SB.Add("\\r");
+ break;
+ case '\t':
+ m_SB.Add("\\t");
+ break;
+ default:
+ VMA_ASSERT(0 && "Character not currently supported.");
+ break;
+ }
+ }
+}
+
+void VmaJsonWriter::ContinueString(uint32_t n)
+{
+ VMA_ASSERT(m_InsideString);
+ m_SB.AddNumber(n);
+}
+
+void VmaJsonWriter::ContinueString(uint64_t n)
+{
+ VMA_ASSERT(m_InsideString);
+ m_SB.AddNumber(n);
+}
+
+void VmaJsonWriter::ContinueString_Pointer(const void* ptr)
+{
+ VMA_ASSERT(m_InsideString);
+ m_SB.AddPointer(ptr);
+}
+
+void VmaJsonWriter::EndString(const char* pStr)
+{
+ VMA_ASSERT(m_InsideString);
+ if(pStr != VMA_NULL && pStr[0] != '\0')
+ {
+ ContinueString(pStr);
+ }
+ m_SB.Add('"');
+ m_InsideString = false;
+}
+
+void VmaJsonWriter::WriteNumber(uint32_t n)
+{
+ VMA_ASSERT(!m_InsideString);
+ BeginValue(false);
+ m_SB.AddNumber(n);
+}
+
+void VmaJsonWriter::WriteNumber(uint64_t n)
+{
+ VMA_ASSERT(!m_InsideString);
+ BeginValue(false);
+ m_SB.AddNumber(n);
+}
+
+void VmaJsonWriter::WriteBool(bool b)
+{
+ VMA_ASSERT(!m_InsideString);
+ BeginValue(false);
+ m_SB.Add(b ? "true" : "false");
+}
+
+void VmaJsonWriter::WriteNull()
+{
+ VMA_ASSERT(!m_InsideString);
+ BeginValue(false);
+ m_SB.Add("null");
+}
+
+void VmaJsonWriter::BeginValue(bool isString)
+{
+ if(!m_Stack.empty())
+ {
+ StackItem& currItem = m_Stack.back();
+ if(currItem.type == COLLECTION_TYPE_OBJECT &&
+ currItem.valueCount % 2 == 0)
+ {
+ VMA_ASSERT(isString);
+ }
+
+ if(currItem.type == COLLECTION_TYPE_OBJECT &&
+ currItem.valueCount % 2 != 0)
+ {
+ m_SB.Add(": ");
+ }
+ else if(currItem.valueCount > 0)
+ {
+ m_SB.Add(", ");
+ WriteIndent();
+ }
+ else
+ {
+ WriteIndent();
+ }
+ ++currItem.valueCount;
+ }
+}
+
+void VmaJsonWriter::WriteIndent(bool oneLess)
+{
+ if(!m_Stack.empty() && !m_Stack.back().singleLineMode)
+ {
+ m_SB.AddNewLine();
+
+ size_t count = m_Stack.size();
+ if(count > 0 && oneLess)
+ {
+ --count;
+ }
+ for(size_t i = 0; i < count; ++i)
+ {
+ m_SB.Add(INDENT);
+ }
+ }
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+////////////////////////////////////////////////////////////////////////////////
+
+void VmaAllocation_T::SetUserData(VmaAllocator hAllocator, void* pUserData)
+{
+ if(IsUserDataString())
+ {
+ VMA_ASSERT(pUserData == VMA_NULL || pUserData != m_pUserData);
+
+ FreeUserDataString(hAllocator);
+
+ if(pUserData != VMA_NULL)
+ {
+ const char* const newStrSrc = (char*)pUserData;
+ const size_t newStrLen = strlen(newStrSrc);
+ char* const newStrDst = vma_new_array(hAllocator, char, newStrLen + 1);
+ memcpy(newStrDst, newStrSrc, newStrLen + 1);
+ m_pUserData = newStrDst;
+ }
+ }
+ else
+ {
+ m_pUserData = pUserData;
+ }
+}
+
+void VmaAllocation_T::ChangeBlockAllocation(
+ VmaAllocator hAllocator,
+ VmaDeviceMemoryBlock* block,
+ VkDeviceSize offset)
+{
+ VMA_ASSERT(block != VMA_NULL);
+ VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
+
+ // Move mapping reference counter from old block to new block.
+ if(block != m_BlockAllocation.m_Block)
+ {
+ uint32_t mapRefCount = m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP;
+ if(IsPersistentMap())
+ ++mapRefCount;
+ m_BlockAllocation.m_Block->Unmap(hAllocator, mapRefCount);
+ block->Map(hAllocator, mapRefCount, VMA_NULL);
+ }
+
+ m_BlockAllocation.m_Block = block;
+ m_BlockAllocation.m_Offset = offset;
+}
+
+void VmaAllocation_T::ChangeOffset(VkDeviceSize newOffset)
+{
+ VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
+ m_BlockAllocation.m_Offset = newOffset;
+}
+
+VkDeviceSize VmaAllocation_T::GetOffset() const
+{
+ switch(m_Type)
+ {
+ case ALLOCATION_TYPE_BLOCK:
+ return m_BlockAllocation.m_Offset;
+ case ALLOCATION_TYPE_DEDICATED:
+ return 0;
+ default:
+ VMA_ASSERT(0);
+ return 0;
+ }
+}
+
+VkDeviceMemory VmaAllocation_T::GetMemory() const
+{
+ switch(m_Type)
+ {
+ case ALLOCATION_TYPE_BLOCK:
+ return m_BlockAllocation.m_Block->GetDeviceMemory();
+ case ALLOCATION_TYPE_DEDICATED:
+ return m_DedicatedAllocation.m_hMemory;
+ default:
+ VMA_ASSERT(0);
+ return VK_NULL_HANDLE;
+ }
+}
+
+uint32_t VmaAllocation_T::GetMemoryTypeIndex() const
+{
+ switch(m_Type)
+ {
+ case ALLOCATION_TYPE_BLOCK:
+ return m_BlockAllocation.m_Block->GetMemoryTypeIndex();
+ case ALLOCATION_TYPE_DEDICATED:
+ return m_DedicatedAllocation.m_MemoryTypeIndex;
+ default:
+ VMA_ASSERT(0);
+ return UINT32_MAX;
+ }
+}
+
+void* VmaAllocation_T::GetMappedData() const
+{
+ switch(m_Type)
+ {
+ case ALLOCATION_TYPE_BLOCK:
+ if(m_MapCount != 0)
+ {
+ void* pBlockData = m_BlockAllocation.m_Block->GetMappedData();
+ VMA_ASSERT(pBlockData != VMA_NULL);
+ return (char*)pBlockData + m_BlockAllocation.m_Offset;
+ }
+ else
+ {
+ return VMA_NULL;
+ }
+ break;
+ case ALLOCATION_TYPE_DEDICATED:
+ VMA_ASSERT((m_DedicatedAllocation.m_pMappedData != VMA_NULL) == (m_MapCount != 0));
+ return m_DedicatedAllocation.m_pMappedData;
+ default:
+ VMA_ASSERT(0);
+ return VMA_NULL;
+ }
+}
+
+bool VmaAllocation_T::CanBecomeLost() const
+{
+ switch(m_Type)
+ {
+ case ALLOCATION_TYPE_BLOCK:
+ return m_BlockAllocation.m_CanBecomeLost;
+ case ALLOCATION_TYPE_DEDICATED:
+ return false;
+ default:
+ VMA_ASSERT(0);
+ return false;
+ }
+}
+
+bool VmaAllocation_T::MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)
+{
+ VMA_ASSERT(CanBecomeLost());
+
+ /*
+ Warning: This is a carefully designed algorithm.
+ Do not modify unless you really know what you're doing :)
+ */
+ uint32_t localLastUseFrameIndex = GetLastUseFrameIndex();
+ for(;;)
+ {
+ if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)
+ {
+ VMA_ASSERT(0);
+ return false;
+ }
+ else if(localLastUseFrameIndex + frameInUseCount >= currentFrameIndex)
+ {
+ return false;
+ }
+ else // Last use time earlier than current time.
+ {
+ if(CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, VMA_FRAME_INDEX_LOST))
+ {
+ // Setting hAllocation.LastUseFrameIndex atomic to VMA_FRAME_INDEX_LOST is enough to mark it as LOST.
+ // Calling code just needs to unregister this allocation in owning VmaDeviceMemoryBlock.
+ return true;
+ }
+ }
+ }
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+// Correspond to values of enum VmaSuballocationType.
+static const char* VMA_SUBALLOCATION_TYPE_NAMES[] = {
+ "FREE",
+ "UNKNOWN",
+ "BUFFER",
+ "IMAGE_UNKNOWN",
+ "IMAGE_LINEAR",
+ "IMAGE_OPTIMAL",
+};
+
+void VmaAllocation_T::PrintParameters(class VmaJsonWriter& json) const
+{
+ json.WriteString("Type");
+ json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[m_SuballocationType]);
+
+ json.WriteString("Size");
+ json.WriteNumber(m_Size);
+
+ if(m_pUserData != VMA_NULL)
+ {
+ json.WriteString("UserData");
+ if(IsUserDataString())
+ {
+ json.WriteString((const char*)m_pUserData);
+ }
+ else
+ {
+ json.BeginString();
+ json.ContinueString_Pointer(m_pUserData);
+ json.EndString();
+ }
+ }
+
+ json.WriteString("CreationFrameIndex");
+ json.WriteNumber(m_CreationFrameIndex);
+
+ json.WriteString("LastUseFrameIndex");
+ json.WriteNumber(GetLastUseFrameIndex());
+
+ if(m_BufferImageUsage != 0)
+ {
+ json.WriteString("Usage");
+ json.WriteNumber(m_BufferImageUsage);
+ }
+}
+
+#endif
+
+void VmaAllocation_T::FreeUserDataString(VmaAllocator hAllocator)
+{
+ VMA_ASSERT(IsUserDataString());
+ if(m_pUserData != VMA_NULL)
+ {
+ char* const oldStr = (char*)m_pUserData;
+ const size_t oldStrLen = strlen(oldStr);
+ vma_delete_array(hAllocator, oldStr, oldStrLen + 1);
+ m_pUserData = VMA_NULL;
+ }
+}
+
+void VmaAllocation_T::BlockAllocMap()
+{
+ VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);
+
+ if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F)
+ {
+ ++m_MapCount;
+ }
+ else
+ {
+ VMA_ASSERT(0 && "Allocation mapped too many times simultaneously.");
+ }
+}
+
+void VmaAllocation_T::BlockAllocUnmap()
+{
+ VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);
+
+ if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0)
+ {
+ --m_MapCount;
+ }
+ else
+ {
+ VMA_ASSERT(0 && "Unmapping allocation not previously mapped.");
+ }
+}
+
+VkResult VmaAllocation_T::DedicatedAllocMap(VmaAllocator hAllocator, void** ppData)
+{
+ VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);
+
+ if(m_MapCount != 0)
+ {
+ if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F)
+ {
+ VMA_ASSERT(m_DedicatedAllocation.m_pMappedData != VMA_NULL);
+ *ppData = m_DedicatedAllocation.m_pMappedData;
+ ++m_MapCount;
+ return VK_SUCCESS;
+ }
+ else
+ {
+ VMA_ASSERT(0 && "Dedicated allocation mapped too many times simultaneously.");
+ return VK_ERROR_MEMORY_MAP_FAILED;
+ }
+ }
+ else
+ {
+ VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
+ hAllocator->m_hDevice,
+ m_DedicatedAllocation.m_hMemory,
+ 0, // offset
+ VK_WHOLE_SIZE,
+ 0, // flags
+ ppData);
+ if(result == VK_SUCCESS)
+ {
+ m_DedicatedAllocation.m_pMappedData = *ppData;
+ m_MapCount = 1;
+ }
+ return result;
+ }
+}
+
+void VmaAllocation_T::DedicatedAllocUnmap(VmaAllocator hAllocator)
+{
+ VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);
+
+ if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0)
+ {
+ --m_MapCount;
+ if(m_MapCount == 0)
+ {
+ m_DedicatedAllocation.m_pMappedData = VMA_NULL;
+ (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(
+ hAllocator->m_hDevice,
+ m_DedicatedAllocation.m_hMemory);
+ }
+ }
+ else
+ {
+ VMA_ASSERT(0 && "Unmapping dedicated allocation not previously mapped.");
+ }
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+static void VmaPrintStatInfo(VmaJsonWriter& json, const VmaStatInfo& stat)
+{
+ json.BeginObject();
+
+ json.WriteString("Blocks");
+ json.WriteNumber(stat.blockCount);
+
+ json.WriteString("Allocations");
+ json.WriteNumber(stat.allocationCount);
+
+ json.WriteString("UnusedRanges");
+ json.WriteNumber(stat.unusedRangeCount);
+
+ json.WriteString("UsedBytes");
+ json.WriteNumber(stat.usedBytes);
+
+ json.WriteString("UnusedBytes");
+ json.WriteNumber(stat.unusedBytes);
+
+ if(stat.allocationCount > 1)
+ {
+ json.WriteString("AllocationSize");
+ json.BeginObject(true);
+ json.WriteString("Min");
+ json.WriteNumber(stat.allocationSizeMin);
+ json.WriteString("Avg");
+ json.WriteNumber(stat.allocationSizeAvg);
+ json.WriteString("Max");
+ json.WriteNumber(stat.allocationSizeMax);
+ json.EndObject();
+ }
+
+ if(stat.unusedRangeCount > 1)
+ {
+ json.WriteString("UnusedRangeSize");
+ json.BeginObject(true);
+ json.WriteString("Min");
+ json.WriteNumber(stat.unusedRangeSizeMin);
+ json.WriteString("Avg");
+ json.WriteNumber(stat.unusedRangeSizeAvg);
+ json.WriteString("Max");
+ json.WriteNumber(stat.unusedRangeSizeMax);
+ json.EndObject();
+ }
+
+ json.EndObject();
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+struct VmaSuballocationItemSizeLess
+{
+ bool operator()(
+ const VmaSuballocationList::iterator lhs,
+ const VmaSuballocationList::iterator rhs) const
+ {
+ return lhs->size < rhs->size;
+ }
+ bool operator()(
+ const VmaSuballocationList::iterator lhs,
+ VkDeviceSize rhsSize) const
+ {
+ return lhs->size < rhsSize;
+ }
+};
+
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaBlockMetadata
+
+VmaBlockMetadata::VmaBlockMetadata(VmaAllocator hAllocator) :
+ m_Size(0),
+ m_pAllocationCallbacks(hAllocator->GetAllocationCallbacks())
+{
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+void VmaBlockMetadata::PrintDetailedMap_Begin(class VmaJsonWriter& json,
+ VkDeviceSize unusedBytes,
+ size_t allocationCount,
+ size_t unusedRangeCount) const
+{
+ json.BeginObject();
+
+ json.WriteString("TotalBytes");
+ json.WriteNumber(GetSize());
+
+ json.WriteString("UnusedBytes");
+ json.WriteNumber(unusedBytes);
+
+ json.WriteString("Allocations");
+ json.WriteNumber((uint64_t)allocationCount);
+
+ json.WriteString("UnusedRanges");
+ json.WriteNumber((uint64_t)unusedRangeCount);
+
+ json.WriteString("Suballocations");
+ json.BeginArray();
+}
+
+void VmaBlockMetadata::PrintDetailedMap_Allocation(class VmaJsonWriter& json,
+ VkDeviceSize offset,
+ VmaAllocation hAllocation) const
+{
+ json.BeginObject(true);
+
+ json.WriteString("Offset");
+ json.WriteNumber(offset);
+
+ hAllocation->PrintParameters(json);
+
+ json.EndObject();
+}
+
+void VmaBlockMetadata::PrintDetailedMap_UnusedRange(class VmaJsonWriter& json,
+ VkDeviceSize offset,
+ VkDeviceSize size) const
+{
+ json.BeginObject(true);
+
+ json.WriteString("Offset");
+ json.WriteNumber(offset);
+
+ json.WriteString("Type");
+ json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[VMA_SUBALLOCATION_TYPE_FREE]);
+
+ json.WriteString("Size");
+ json.WriteNumber(size);
+
+ json.EndObject();
+}
+
+void VmaBlockMetadata::PrintDetailedMap_End(class VmaJsonWriter& json) const
+{
+ json.EndArray();
+ json.EndObject();
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaBlockMetadata_Generic
+
+VmaBlockMetadata_Generic::VmaBlockMetadata_Generic(VmaAllocator hAllocator) :
+ VmaBlockMetadata(hAllocator),
+ m_FreeCount(0),
+ m_SumFreeSize(0),
+ m_Suballocations(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())),
+ m_FreeSuballocationsBySize(VmaStlAllocator<VmaSuballocationList::iterator>(hAllocator->GetAllocationCallbacks()))
+{
+}
+
+VmaBlockMetadata_Generic::~VmaBlockMetadata_Generic()
+{
+}
+
+void VmaBlockMetadata_Generic::Init(VkDeviceSize size)
+{
+ VmaBlockMetadata::Init(size);
+
+ m_FreeCount = 1;
+ m_SumFreeSize = size;
+
+ VmaSuballocation suballoc = {};
+ suballoc.offset = 0;
+ suballoc.size = size;
+ suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
+ suballoc.hAllocation = VK_NULL_HANDLE;
+
+ VMA_ASSERT(size > VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER);
+ m_Suballocations.push_back(suballoc);
+ VmaSuballocationList::iterator suballocItem = m_Suballocations.end();
+ --suballocItem;
+ m_FreeSuballocationsBySize.push_back(suballocItem);
+}
+
+bool VmaBlockMetadata_Generic::Validate() const
+{
+ VMA_VALIDATE(!m_Suballocations.empty());
+
+ // Expected offset of new suballocation as calculated from previous ones.
+ VkDeviceSize calculatedOffset = 0;
+ // Expected number of free suballocations as calculated from traversing their list.
+ uint32_t calculatedFreeCount = 0;
+ // Expected sum size of free suballocations as calculated from traversing their list.
+ VkDeviceSize calculatedSumFreeSize = 0;
+ // Expected number of free suballocations that should be registered in
+ // m_FreeSuballocationsBySize calculated from traversing their list.
+ size_t freeSuballocationsToRegister = 0;
+ // True if previous visited suballocation was free.
+ bool prevFree = false;
+
+ for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();
+ suballocItem != m_Suballocations.cend();
+ ++suballocItem)
+ {
+ const VmaSuballocation& subAlloc = *suballocItem;
+
+ // Actual offset of this suballocation doesn't match expected one.
+ VMA_VALIDATE(subAlloc.offset == calculatedOffset);
+
+ const bool currFree = (subAlloc.type == VMA_SUBALLOCATION_TYPE_FREE);
+ // Two adjacent free suballocations are invalid. They should be merged.
+ VMA_VALIDATE(!prevFree || !currFree);
+
+ VMA_VALIDATE(currFree == (subAlloc.hAllocation == VK_NULL_HANDLE));
+
+ if(currFree)
+ {
+ calculatedSumFreeSize += subAlloc.size;
+ ++calculatedFreeCount;
+ if(subAlloc.size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
+ {
+ ++freeSuballocationsToRegister;
+ }
+
+ // Margin required between allocations - every free space must be at least that large.
+ VMA_VALIDATE(subAlloc.size >= VMA_DEBUG_MARGIN);
+ }
+ else
+ {
+ VMA_VALIDATE(subAlloc.hAllocation->GetOffset() == subAlloc.offset);
+ VMA_VALIDATE(subAlloc.hAllocation->GetSize() == subAlloc.size);
+
+ // Margin required between allocations - previous allocation must be free.
+ VMA_VALIDATE(VMA_DEBUG_MARGIN == 0 || prevFree);
+ }
+
+ calculatedOffset += subAlloc.size;
+ prevFree = currFree;
+ }
+
+ // Number of free suballocations registered in m_FreeSuballocationsBySize doesn't
+ // match expected one.
+ VMA_VALIDATE(m_FreeSuballocationsBySize.size() == freeSuballocationsToRegister);
+
+ VkDeviceSize lastSize = 0;
+ for(size_t i = 0; i < m_FreeSuballocationsBySize.size(); ++i)
+ {
+ VmaSuballocationList::iterator suballocItem = m_FreeSuballocationsBySize[i];
+
+ // Only free suballocations can be registered in m_FreeSuballocationsBySize.
+ VMA_VALIDATE(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE);
+ // They must be sorted by size ascending.
+ VMA_VALIDATE(suballocItem->size >= lastSize);
+
+ lastSize = suballocItem->size;
+ }
+
+ // Check if totals match calculacted values.
+ VMA_VALIDATE(ValidateFreeSuballocationList());
+ VMA_VALIDATE(calculatedOffset == GetSize());
+ VMA_VALIDATE(calculatedSumFreeSize == m_SumFreeSize);
+ VMA_VALIDATE(calculatedFreeCount == m_FreeCount);
+
+ return true;
+}
+
+VkDeviceSize VmaBlockMetadata_Generic::GetUnusedRangeSizeMax() const
+{
+ if(!m_FreeSuballocationsBySize.empty())
+ {
+ return m_FreeSuballocationsBySize.back()->size;
+ }
+ else
+ {
+ return 0;
+ }
+}
+
+bool VmaBlockMetadata_Generic::IsEmpty() const
+{
+ return (m_Suballocations.size() == 1) && (m_FreeCount == 1);
+}
+
+void VmaBlockMetadata_Generic::CalcAllocationStatInfo(VmaStatInfo& outInfo) const
+{
+ outInfo.blockCount = 1;
+
+ const uint32_t rangeCount = (uint32_t)m_Suballocations.size();
+ outInfo.allocationCount = rangeCount - m_FreeCount;
+ outInfo.unusedRangeCount = m_FreeCount;
+
+ outInfo.unusedBytes = m_SumFreeSize;
+ outInfo.usedBytes = GetSize() - outInfo.unusedBytes;
+
+ outInfo.allocationSizeMin = UINT64_MAX;
+ outInfo.allocationSizeMax = 0;
+ outInfo.unusedRangeSizeMin = UINT64_MAX;
+ outInfo.unusedRangeSizeMax = 0;
+
+ for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();
+ suballocItem != m_Suballocations.cend();
+ ++suballocItem)
+ {
+ const VmaSuballocation& suballoc = *suballocItem;
+ if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size);
+ outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, suballoc.size);
+ }
+ else
+ {
+ outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, suballoc.size);
+ outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, suballoc.size);
+ }
+ }
+}
+
+void VmaBlockMetadata_Generic::AddPoolStats(VmaPoolStats& inoutStats) const
+{
+ const uint32_t rangeCount = (uint32_t)m_Suballocations.size();
+
+ inoutStats.size += GetSize();
+ inoutStats.unusedSize += m_SumFreeSize;
+ inoutStats.allocationCount += rangeCount - m_FreeCount;
+ inoutStats.unusedRangeCount += m_FreeCount;
+ inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax());
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+void VmaBlockMetadata_Generic::PrintDetailedMap(class VmaJsonWriter& json) const
+{
+ PrintDetailedMap_Begin(json,
+ m_SumFreeSize, // unusedBytes
+ m_Suballocations.size() - (size_t)m_FreeCount, // allocationCount
+ m_FreeCount); // unusedRangeCount
+
+ size_t i = 0;
+ for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();
+ suballocItem != m_Suballocations.cend();
+ ++suballocItem, ++i)
+ {
+ if(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ PrintDetailedMap_UnusedRange(json, suballocItem->offset, suballocItem->size);
+ }
+ else
+ {
+ PrintDetailedMap_Allocation(json, suballocItem->offset, suballocItem->hAllocation);
+ }
+ }
+
+ PrintDetailedMap_End(json);
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+bool VmaBlockMetadata_Generic::CreateAllocationRequest(
+ uint32_t currentFrameIndex,
+ uint32_t frameInUseCount,
+ VkDeviceSize bufferImageGranularity,
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ bool upperAddress,
+ VmaSuballocationType allocType,
+ bool canMakeOtherLost,
+ uint32_t strategy,
+ VmaAllocationRequest* pAllocationRequest)
+{
+ VMA_ASSERT(allocSize > 0);
+ VMA_ASSERT(!upperAddress);
+ VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
+ VMA_ASSERT(pAllocationRequest != VMA_NULL);
+ VMA_HEAVY_ASSERT(Validate());
+
+ pAllocationRequest->type = VmaAllocationRequestType::Normal;
+
+ // There is not enough total free space in this block to fullfill the request: Early return.
+ if(canMakeOtherLost == false &&
+ m_SumFreeSize < allocSize + 2 * VMA_DEBUG_MARGIN)
+ {
+ return false;
+ }
+
+ // New algorithm, efficiently searching freeSuballocationsBySize.
+ const size_t freeSuballocCount = m_FreeSuballocationsBySize.size();
+ if(freeSuballocCount > 0)
+ {
+ if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT)
+ {
+ // Find first free suballocation with size not less than allocSize + 2 * VMA_DEBUG_MARGIN.
+ VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(
+ m_FreeSuballocationsBySize.data(),
+ m_FreeSuballocationsBySize.data() + freeSuballocCount,
+ allocSize + 2 * VMA_DEBUG_MARGIN,
+ VmaSuballocationItemSizeLess());
+ size_t index = it - m_FreeSuballocationsBySize.data();
+ for(; index < freeSuballocCount; ++index)
+ {
+ if(CheckAllocation(
+ currentFrameIndex,
+ frameInUseCount,
+ bufferImageGranularity,
+ allocSize,
+ allocAlignment,
+ allocType,
+ m_FreeSuballocationsBySize[index],
+ false, // canMakeOtherLost
+ &pAllocationRequest->offset,
+ &pAllocationRequest->itemsToMakeLostCount,
+ &pAllocationRequest->sumFreeSize,
+ &pAllocationRequest->sumItemSize))
+ {
+ pAllocationRequest->item = m_FreeSuballocationsBySize[index];
+ return true;
+ }
+ }
+ }
+ else if(strategy == VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET)
+ {
+ for(VmaSuballocationList::iterator it = m_Suballocations.begin();
+ it != m_Suballocations.end();
+ ++it)
+ {
+ if(it->type == VMA_SUBALLOCATION_TYPE_FREE && CheckAllocation(
+ currentFrameIndex,
+ frameInUseCount,
+ bufferImageGranularity,
+ allocSize,
+ allocAlignment,
+ allocType,
+ it,
+ false, // canMakeOtherLost
+ &pAllocationRequest->offset,
+ &pAllocationRequest->itemsToMakeLostCount,
+ &pAllocationRequest->sumFreeSize,
+ &pAllocationRequest->sumItemSize))
+ {
+ pAllocationRequest->item = it;
+ return true;
+ }
+ }
+ }
+ else // WORST_FIT, FIRST_FIT
+ {
+ // Search staring from biggest suballocations.
+ for(size_t index = freeSuballocCount; index--; )
+ {
+ if(CheckAllocation(
+ currentFrameIndex,
+ frameInUseCount,
+ bufferImageGranularity,
+ allocSize,
+ allocAlignment,
+ allocType,
+ m_FreeSuballocationsBySize[index],
+ false, // canMakeOtherLost
+ &pAllocationRequest->offset,
+ &pAllocationRequest->itemsToMakeLostCount,
+ &pAllocationRequest->sumFreeSize,
+ &pAllocationRequest->sumItemSize))
+ {
+ pAllocationRequest->item = m_FreeSuballocationsBySize[index];
+ return true;
+ }
+ }
+ }
+ }
+
+ if(canMakeOtherLost)
+ {
+ // Brute-force algorithm. TODO: Come up with something better.
+
+ bool found = false;
+ VmaAllocationRequest tmpAllocRequest = {};
+ tmpAllocRequest.type = VmaAllocationRequestType::Normal;
+ for(VmaSuballocationList::iterator suballocIt = m_Suballocations.begin();
+ suballocIt != m_Suballocations.end();
+ ++suballocIt)
+ {
+ if(suballocIt->type == VMA_SUBALLOCATION_TYPE_FREE ||
+ suballocIt->hAllocation->CanBecomeLost())
+ {
+ if(CheckAllocation(
+ currentFrameIndex,
+ frameInUseCount,
+ bufferImageGranularity,
+ allocSize,
+ allocAlignment,
+ allocType,
+ suballocIt,
+ canMakeOtherLost,
+ &tmpAllocRequest.offset,
+ &tmpAllocRequest.itemsToMakeLostCount,
+ &tmpAllocRequest.sumFreeSize,
+ &tmpAllocRequest.sumItemSize))
+ {
+ if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT)
+ {
+ *pAllocationRequest = tmpAllocRequest;
+ pAllocationRequest->item = suballocIt;
+ break;
+ }
+ if(!found || tmpAllocRequest.CalcCost() < pAllocationRequest->CalcCost())
+ {
+ *pAllocationRequest = tmpAllocRequest;
+ pAllocationRequest->item = suballocIt;
+ found = true;
+ }
+ }
+ }
+ }
+
+ return found;
+ }
+
+ return false;
+}
+
+bool VmaBlockMetadata_Generic::MakeRequestedAllocationsLost(
+ uint32_t currentFrameIndex,
+ uint32_t frameInUseCount,
+ VmaAllocationRequest* pAllocationRequest)
+{
+ VMA_ASSERT(pAllocationRequest && pAllocationRequest->type == VmaAllocationRequestType::Normal);
+
+ while(pAllocationRequest->itemsToMakeLostCount > 0)
+ {
+ if(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ ++pAllocationRequest->item;
+ }
+ VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end());
+ VMA_ASSERT(pAllocationRequest->item->hAllocation != VK_NULL_HANDLE);
+ VMA_ASSERT(pAllocationRequest->item->hAllocation->CanBecomeLost());
+ if(pAllocationRequest->item->hAllocation->MakeLost(currentFrameIndex, frameInUseCount))
+ {
+ pAllocationRequest->item = FreeSuballocation(pAllocationRequest->item);
+ --pAllocationRequest->itemsToMakeLostCount;
+ }
+ else
+ {
+ return false;
+ }
+ }
+
+ VMA_HEAVY_ASSERT(Validate());
+ VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end());
+ VMA_ASSERT(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE);
+
+ return true;
+}
+
+uint32_t VmaBlockMetadata_Generic::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)
+{
+ uint32_t lostAllocationCount = 0;
+ for(VmaSuballocationList::iterator it = m_Suballocations.begin();
+ it != m_Suballocations.end();
+ ++it)
+ {
+ if(it->type != VMA_SUBALLOCATION_TYPE_FREE &&
+ it->hAllocation->CanBecomeLost() &&
+ it->hAllocation->MakeLost(currentFrameIndex, frameInUseCount))
+ {
+ it = FreeSuballocation(it);
+ ++lostAllocationCount;
+ }
+ }
+ return lostAllocationCount;
+}
+
+VkResult VmaBlockMetadata_Generic::CheckCorruption(const void* pBlockData)
+{
+ for(VmaSuballocationList::iterator it = m_Suballocations.begin();
+ it != m_Suballocations.end();
+ ++it)
+ {
+ if(it->type != VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ if(!VmaValidateMagicValue(pBlockData, it->offset - VMA_DEBUG_MARGIN))
+ {
+ VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!");
+ return VK_ERROR_VALIDATION_FAILED_EXT;
+ }
+ if(!VmaValidateMagicValue(pBlockData, it->offset + it->size))
+ {
+ VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
+ return VK_ERROR_VALIDATION_FAILED_EXT;
+ }
+ }
+ }
+
+ return VK_SUCCESS;
+}
+
+void VmaBlockMetadata_Generic::Alloc(
+ const VmaAllocationRequest& request,
+ VmaSuballocationType type,
+ VkDeviceSize allocSize,
+ VmaAllocation hAllocation)
+{
+ VMA_ASSERT(request.type == VmaAllocationRequestType::Normal);
+ VMA_ASSERT(request.item != m_Suballocations.end());
+ VmaSuballocation& suballoc = *request.item;
+ // Given suballocation is a free block.
+ VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
+ // Given offset is inside this suballocation.
+ VMA_ASSERT(request.offset >= suballoc.offset);
+ const VkDeviceSize paddingBegin = request.offset - suballoc.offset;
+ VMA_ASSERT(suballoc.size >= paddingBegin + allocSize);
+ const VkDeviceSize paddingEnd = suballoc.size - paddingBegin - allocSize;
+
+ // Unregister this free suballocation from m_FreeSuballocationsBySize and update
+ // it to become used.
+ UnregisterFreeSuballocation(request.item);
+
+ suballoc.offset = request.offset;
+ suballoc.size = allocSize;
+ suballoc.type = type;
+ suballoc.hAllocation = hAllocation;
+
+ // If there are any free bytes remaining at the end, insert new free suballocation after current one.
+ if(paddingEnd)
+ {
+ VmaSuballocation paddingSuballoc = {};
+ paddingSuballoc.offset = request.offset + allocSize;
+ paddingSuballoc.size = paddingEnd;
+ paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
+ VmaSuballocationList::iterator next = request.item;
+ ++next;
+ const VmaSuballocationList::iterator paddingEndItem =
+ m_Suballocations.insert(next, paddingSuballoc);
+ RegisterFreeSuballocation(paddingEndItem);
+ }
+
+ // If there are any free bytes remaining at the beginning, insert new free suballocation before current one.
+ if(paddingBegin)
+ {
+ VmaSuballocation paddingSuballoc = {};
+ paddingSuballoc.offset = request.offset - paddingBegin;
+ paddingSuballoc.size = paddingBegin;
+ paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
+ const VmaSuballocationList::iterator paddingBeginItem =
+ m_Suballocations.insert(request.item, paddingSuballoc);
+ RegisterFreeSuballocation(paddingBeginItem);
+ }
+
+ // Update totals.
+ m_FreeCount = m_FreeCount - 1;
+ if(paddingBegin > 0)
+ {
+ ++m_FreeCount;
+ }
+ if(paddingEnd > 0)
+ {
+ ++m_FreeCount;
+ }
+ m_SumFreeSize -= allocSize;
+}
+
+void VmaBlockMetadata_Generic::Free(const VmaAllocation allocation)
+{
+ for(VmaSuballocationList::iterator suballocItem = m_Suballocations.begin();
+ suballocItem != m_Suballocations.end();
+ ++suballocItem)
+ {
+ VmaSuballocation& suballoc = *suballocItem;
+ if(suballoc.hAllocation == allocation)
+ {
+ FreeSuballocation(suballocItem);
+ VMA_HEAVY_ASSERT(Validate());
+ return;
+ }
+ }
+ VMA_ASSERT(0 && "Not found!");
+}
+
+void VmaBlockMetadata_Generic::FreeAtOffset(VkDeviceSize offset)
+{
+ for(VmaSuballocationList::iterator suballocItem = m_Suballocations.begin();
+ suballocItem != m_Suballocations.end();
+ ++suballocItem)
+ {
+ VmaSuballocation& suballoc = *suballocItem;
+ if(suballoc.offset == offset)
+ {
+ FreeSuballocation(suballocItem);
+ return;
+ }
+ }
+ VMA_ASSERT(0 && "Not found!");
+}
+
+bool VmaBlockMetadata_Generic::ValidateFreeSuballocationList() const
+{
+ VkDeviceSize lastSize = 0;
+ for(size_t i = 0, count = m_FreeSuballocationsBySize.size(); i < count; ++i)
+ {
+ const VmaSuballocationList::iterator it = m_FreeSuballocationsBySize[i];
+
+ VMA_VALIDATE(it->type == VMA_SUBALLOCATION_TYPE_FREE);
+ VMA_VALIDATE(it->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER);
+ VMA_VALIDATE(it->size >= lastSize);
+ lastSize = it->size;
+ }
+ return true;
+}
+
+bool VmaBlockMetadata_Generic::CheckAllocation(
+ uint32_t currentFrameIndex,
+ uint32_t frameInUseCount,
+ VkDeviceSize bufferImageGranularity,
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ VmaSuballocationType allocType,
+ VmaSuballocationList::const_iterator suballocItem,
+ bool canMakeOtherLost,
+ VkDeviceSize* pOffset,
+ size_t* itemsToMakeLostCount,
+ VkDeviceSize* pSumFreeSize,
+ VkDeviceSize* pSumItemSize) const
+{
+ VMA_ASSERT(allocSize > 0);
+ VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
+ VMA_ASSERT(suballocItem != m_Suballocations.cend());
+ VMA_ASSERT(pOffset != VMA_NULL);
+
+ *itemsToMakeLostCount = 0;
+ *pSumFreeSize = 0;
+ *pSumItemSize = 0;
+
+ if(canMakeOtherLost)
+ {
+ if(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ *pSumFreeSize = suballocItem->size;
+ }
+ else
+ {
+ if(suballocItem->hAllocation->CanBecomeLost() &&
+ suballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
+ {
+ ++*itemsToMakeLostCount;
+ *pSumItemSize = suballocItem->size;
+ }
+ else
+ {
+ return false;
+ }
+ }
+
+ // Remaining size is too small for this request: Early return.
+ if(GetSize() - suballocItem->offset < allocSize)
+ {
+ return false;
+ }
+
+ // Start from offset equal to beginning of this suballocation.
+ *pOffset = suballocItem->offset;
+
+ // Apply VMA_DEBUG_MARGIN at the beginning.
+ if(VMA_DEBUG_MARGIN > 0)
+ {
+ *pOffset += VMA_DEBUG_MARGIN;
+ }
+
+ // Apply alignment.
+ *pOffset = VmaAlignUp(*pOffset, allocAlignment);
+
+ // Check previous suballocations for BufferImageGranularity conflicts.
+ // Make bigger alignment if necessary.
+ if(bufferImageGranularity > 1)
+ {
+ bool bufferImageGranularityConflict = false;
+ VmaSuballocationList::const_iterator prevSuballocItem = suballocItem;
+ while(prevSuballocItem != m_Suballocations.cbegin())
+ {
+ --prevSuballocItem;
+ const VmaSuballocation& prevSuballoc = *prevSuballocItem;
+ if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity))
+ {
+ if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
+ {
+ bufferImageGranularityConflict = true;
+ break;
+ }
+ }
+ else
+ // Already on previous page.
+ break;
+ }
+ if(bufferImageGranularityConflict)
+ {
+ *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity);
+ }
+ }
+
+ // Now that we have final *pOffset, check if we are past suballocItem.
+ // If yes, return false - this function should be called for another suballocItem as starting point.
+ if(*pOffset >= suballocItem->offset + suballocItem->size)
+ {
+ return false;
+ }
+
+ // Calculate padding at the beginning based on current offset.
+ const VkDeviceSize paddingBegin = *pOffset - suballocItem->offset;
+
+ // Calculate required margin at the end.
+ const VkDeviceSize requiredEndMargin = VMA_DEBUG_MARGIN;
+
+ const VkDeviceSize totalSize = paddingBegin + allocSize + requiredEndMargin;
+ // Another early return check.
+ if(suballocItem->offset + totalSize > GetSize())
+ {
+ return false;
+ }
+
+ // Advance lastSuballocItem until desired size is reached.
+ // Update itemsToMakeLostCount.
+ VmaSuballocationList::const_iterator lastSuballocItem = suballocItem;
+ if(totalSize > suballocItem->size)
+ {
+ VkDeviceSize remainingSize = totalSize - suballocItem->size;
+ while(remainingSize > 0)
+ {
+ ++lastSuballocItem;
+ if(lastSuballocItem == m_Suballocations.cend())
+ {
+ return false;
+ }
+ if(lastSuballocItem->type == VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ *pSumFreeSize += lastSuballocItem->size;
+ }
+ else
+ {
+ VMA_ASSERT(lastSuballocItem->hAllocation != VK_NULL_HANDLE);
+ if(lastSuballocItem->hAllocation->CanBecomeLost() &&
+ lastSuballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
+ {
+ ++*itemsToMakeLostCount;
+ *pSumItemSize += lastSuballocItem->size;
+ }
+ else
+ {
+ return false;
+ }
+ }
+ remainingSize = (lastSuballocItem->size < remainingSize) ?
+ remainingSize - lastSuballocItem->size : 0;
+ }
+ }
+
+ // Check next suballocations for BufferImageGranularity conflicts.
+ // If conflict exists, we must mark more allocations lost or fail.
+ if(bufferImageGranularity > 1)
+ {
+ VmaSuballocationList::const_iterator nextSuballocItem = lastSuballocItem;
+ ++nextSuballocItem;
+ while(nextSuballocItem != m_Suballocations.cend())
+ {
+ const VmaSuballocation& nextSuballoc = *nextSuballocItem;
+ if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
+ {
+ if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
+ {
+ VMA_ASSERT(nextSuballoc.hAllocation != VK_NULL_HANDLE);
+ if(nextSuballoc.hAllocation->CanBecomeLost() &&
+ nextSuballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
+ {
+ ++*itemsToMakeLostCount;
+ }
+ else
+ {
+ return false;
+ }
+ }
+ }
+ else
+ {
+ // Already on next page.
+ break;
+ }
+ ++nextSuballocItem;
+ }
+ }
+ }
+ else
+ {
+ const VmaSuballocation& suballoc = *suballocItem;
+ VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
+
+ *pSumFreeSize = suballoc.size;
+
+ // Size of this suballocation is too small for this request: Early return.
+ if(suballoc.size < allocSize)
+ {
+ return false;
+ }
+
+ // Start from offset equal to beginning of this suballocation.
+ *pOffset = suballoc.offset;
+
+ // Apply VMA_DEBUG_MARGIN at the beginning.
+ if(VMA_DEBUG_MARGIN > 0)
+ {
+ *pOffset += VMA_DEBUG_MARGIN;
+ }
+
+ // Apply alignment.
+ *pOffset = VmaAlignUp(*pOffset, allocAlignment);
+
+ // Check previous suballocations for BufferImageGranularity conflicts.
+ // Make bigger alignment if necessary.
+ if(bufferImageGranularity > 1)
+ {
+ bool bufferImageGranularityConflict = false;
+ VmaSuballocationList::const_iterator prevSuballocItem = suballocItem;
+ while(prevSuballocItem != m_Suballocations.cbegin())
+ {
+ --prevSuballocItem;
+ const VmaSuballocation& prevSuballoc = *prevSuballocItem;
+ if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity))
+ {
+ if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
+ {
+ bufferImageGranularityConflict = true;
+ break;
+ }
+ }
+ else
+ // Already on previous page.
+ break;
+ }
+ if(bufferImageGranularityConflict)
+ {
+ *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity);
+ }
+ }
+
+ // Calculate padding at the beginning based on current offset.
+ const VkDeviceSize paddingBegin = *pOffset - suballoc.offset;
+
+ // Calculate required margin at the end.
+ const VkDeviceSize requiredEndMargin = VMA_DEBUG_MARGIN;
+
+ // Fail if requested size plus margin before and after is bigger than size of this suballocation.
+ if(paddingBegin + allocSize + requiredEndMargin > suballoc.size)
+ {
+ return false;
+ }
+
+ // Check next suballocations for BufferImageGranularity conflicts.
+ // If conflict exists, allocation cannot be made here.
+ if(bufferImageGranularity > 1)
+ {
+ VmaSuballocationList::const_iterator nextSuballocItem = suballocItem;
+ ++nextSuballocItem;
+ while(nextSuballocItem != m_Suballocations.cend())
+ {
+ const VmaSuballocation& nextSuballoc = *nextSuballocItem;
+ if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
+ {
+ if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
+ {
+ return false;
+ }
+ }
+ else
+ {
+ // Already on next page.
+ break;
+ }
+ ++nextSuballocItem;
+ }
+ }
+ }
+
+ // All tests passed: Success. pOffset is already filled.
+ return true;
+}
+
+void VmaBlockMetadata_Generic::MergeFreeWithNext(VmaSuballocationList::iterator item)
+{
+ VMA_ASSERT(item != m_Suballocations.end());
+ VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
+
+ VmaSuballocationList::iterator nextItem = item;
+ ++nextItem;
+ VMA_ASSERT(nextItem != m_Suballocations.end());
+ VMA_ASSERT(nextItem->type == VMA_SUBALLOCATION_TYPE_FREE);
+
+ item->size += nextItem->size;
+ --m_FreeCount;
+ m_Suballocations.erase(nextItem);
+}
+
+VmaSuballocationList::iterator VmaBlockMetadata_Generic::FreeSuballocation(VmaSuballocationList::iterator suballocItem)
+{
+ // Change this suballocation to be marked as free.
+ VmaSuballocation& suballoc = *suballocItem;
+ suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
+ suballoc.hAllocation = VK_NULL_HANDLE;
+
+ // Update totals.
+ ++m_FreeCount;
+ m_SumFreeSize += suballoc.size;
+
+ // Merge with previous and/or next suballocation if it's also free.
+ bool mergeWithNext = false;
+ bool mergeWithPrev = false;
+
+ VmaSuballocationList::iterator nextItem = suballocItem;
+ ++nextItem;
+ if((nextItem != m_Suballocations.end()) && (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE))
+ {
+ mergeWithNext = true;
+ }
+
+ VmaSuballocationList::iterator prevItem = suballocItem;
+ if(suballocItem != m_Suballocations.begin())
+ {
+ --prevItem;
+ if(prevItem->type == VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ mergeWithPrev = true;
+ }
+ }
+
+ if(mergeWithNext)
+ {
+ UnregisterFreeSuballocation(nextItem);
+ MergeFreeWithNext(suballocItem);
+ }
+
+ if(mergeWithPrev)
+ {
+ UnregisterFreeSuballocation(prevItem);
+ MergeFreeWithNext(prevItem);
+ RegisterFreeSuballocation(prevItem);
+ return prevItem;
+ }
+ else
+ {
+ RegisterFreeSuballocation(suballocItem);
+ return suballocItem;
+ }
+}
+
+void VmaBlockMetadata_Generic::RegisterFreeSuballocation(VmaSuballocationList::iterator item)
+{
+ VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
+ VMA_ASSERT(item->size > 0);
+
+ // You may want to enable this validation at the beginning or at the end of
+ // this function, depending on what do you want to check.
+ VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
+
+ if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
+ {
+ if(m_FreeSuballocationsBySize.empty())
+ {
+ m_FreeSuballocationsBySize.push_back(item);
+ }
+ else
+ {
+ VmaVectorInsertSorted<VmaSuballocationItemSizeLess>(m_FreeSuballocationsBySize, item);
+ }
+ }
+
+ //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
+}
+
+
+void VmaBlockMetadata_Generic::UnregisterFreeSuballocation(VmaSuballocationList::iterator item)
+{
+ VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
+ VMA_ASSERT(item->size > 0);
+
+ // You may want to enable this validation at the beginning or at the end of
+ // this function, depending on what do you want to check.
+ VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
+
+ if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
+ {
+ VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(
+ m_FreeSuballocationsBySize.data(),
+ m_FreeSuballocationsBySize.data() + m_FreeSuballocationsBySize.size(),
+ item,
+ VmaSuballocationItemSizeLess());
+ for(size_t index = it - m_FreeSuballocationsBySize.data();
+ index < m_FreeSuballocationsBySize.size();
+ ++index)
+ {
+ if(m_FreeSuballocationsBySize[index] == item)
+ {
+ VmaVectorRemove(m_FreeSuballocationsBySize, index);
+ return;
+ }
+ VMA_ASSERT((m_FreeSuballocationsBySize[index]->size == item->size) && "Not found.");
+ }
+ VMA_ASSERT(0 && "Not found.");
+ }
+
+ //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
+}
+
+bool VmaBlockMetadata_Generic::IsBufferImageGranularityConflictPossible(
+ VkDeviceSize bufferImageGranularity,
+ VmaSuballocationType& inOutPrevSuballocType) const
+{
+ if(bufferImageGranularity == 1 || IsEmpty())
+ {
+ return false;
+ }
+
+ VkDeviceSize minAlignment = VK_WHOLE_SIZE;
+ bool typeConflictFound = false;
+ for(VmaSuballocationList::const_iterator it = m_Suballocations.cbegin();
+ it != m_Suballocations.cend();
+ ++it)
+ {
+ const VmaSuballocationType suballocType = it->type;
+ if(suballocType != VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ minAlignment = VMA_MIN(minAlignment, it->hAllocation->GetAlignment());
+ if(VmaIsBufferImageGranularityConflict(inOutPrevSuballocType, suballocType))
+ {
+ typeConflictFound = true;
+ }
+ inOutPrevSuballocType = suballocType;
+ }
+ }
+
+ return typeConflictFound || minAlignment >= bufferImageGranularity;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaBlockMetadata_Linear
+
+VmaBlockMetadata_Linear::VmaBlockMetadata_Linear(VmaAllocator hAllocator) :
+ VmaBlockMetadata(hAllocator),
+ m_SumFreeSize(0),
+ m_Suballocations0(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())),
+ m_Suballocations1(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())),
+ m_1stVectorIndex(0),
+ m_2ndVectorMode(SECOND_VECTOR_EMPTY),
+ m_1stNullItemsBeginCount(0),
+ m_1stNullItemsMiddleCount(0),
+ m_2ndNullItemsCount(0)
+{
+}
+
+VmaBlockMetadata_Linear::~VmaBlockMetadata_Linear()
+{
+}
+
+void VmaBlockMetadata_Linear::Init(VkDeviceSize size)
+{
+ VmaBlockMetadata::Init(size);
+ m_SumFreeSize = size;
+}
+
+bool VmaBlockMetadata_Linear::Validate() const
+{
+ const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+ const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+
+ VMA_VALIDATE(suballocations2nd.empty() == (m_2ndVectorMode == SECOND_VECTOR_EMPTY));
+ VMA_VALIDATE(!suballocations1st.empty() ||
+ suballocations2nd.empty() ||
+ m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER);
+
+ if(!suballocations1st.empty())
+ {
+ // Null item at the beginning should be accounted into m_1stNullItemsBeginCount.
+ VMA_VALIDATE(suballocations1st[m_1stNullItemsBeginCount].hAllocation != VK_NULL_HANDLE);
+ // Null item at the end should be just pop_back().
+ VMA_VALIDATE(suballocations1st.back().hAllocation != VK_NULL_HANDLE);
+ }
+ if(!suballocations2nd.empty())
+ {
+ // Null item at the end should be just pop_back().
+ VMA_VALIDATE(suballocations2nd.back().hAllocation != VK_NULL_HANDLE);
+ }
+
+ VMA_VALIDATE(m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount <= suballocations1st.size());
+ VMA_VALIDATE(m_2ndNullItemsCount <= suballocations2nd.size());
+
+ VkDeviceSize sumUsedSize = 0;
+ const size_t suballoc1stCount = suballocations1st.size();
+ VkDeviceSize offset = VMA_DEBUG_MARGIN;
+
+ if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
+ {
+ const size_t suballoc2ndCount = suballocations2nd.size();
+ size_t nullItem2ndCount = 0;
+ for(size_t i = 0; i < suballoc2ndCount; ++i)
+ {
+ const VmaSuballocation& suballoc = suballocations2nd[i];
+ const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
+
+ VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE));
+ VMA_VALIDATE(suballoc.offset >= offset);
+
+ if(!currFree)
+ {
+ VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset);
+ VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size);
+ sumUsedSize += suballoc.size;
+ }
+ else
+ {
+ ++nullItem2ndCount;
+ }
+
+ offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN;
+ }
+
+ VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount);
+ }
+
+ for(size_t i = 0; i < m_1stNullItemsBeginCount; ++i)
+ {
+ const VmaSuballocation& suballoc = suballocations1st[i];
+ VMA_VALIDATE(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE &&
+ suballoc.hAllocation == VK_NULL_HANDLE);
+ }
+
+ size_t nullItem1stCount = m_1stNullItemsBeginCount;
+
+ for(size_t i = m_1stNullItemsBeginCount; i < suballoc1stCount; ++i)
+ {
+ const VmaSuballocation& suballoc = suballocations1st[i];
+ const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
+
+ VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE));
+ VMA_VALIDATE(suballoc.offset >= offset);
+ VMA_VALIDATE(i >= m_1stNullItemsBeginCount || currFree);
+
+ if(!currFree)
+ {
+ VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset);
+ VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size);
+ sumUsedSize += suballoc.size;
+ }
+ else
+ {
+ ++nullItem1stCount;
+ }
+
+ offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN;
+ }
+ VMA_VALIDATE(nullItem1stCount == m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount);
+
+ if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
+ {
+ const size_t suballoc2ndCount = suballocations2nd.size();
+ size_t nullItem2ndCount = 0;
+ for(size_t i = suballoc2ndCount; i--; )
+ {
+ const VmaSuballocation& suballoc = suballocations2nd[i];
+ const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
+
+ VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE));
+ VMA_VALIDATE(suballoc.offset >= offset);
+
+ if(!currFree)
+ {
+ VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset);
+ VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size);
+ sumUsedSize += suballoc.size;
+ }
+ else
+ {
+ ++nullItem2ndCount;
+ }
+
+ offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN;
+ }
+
+ VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount);
+ }
+
+ VMA_VALIDATE(offset <= GetSize());
+ VMA_VALIDATE(m_SumFreeSize == GetSize() - sumUsedSize);
+
+ return true;
+}
+
+size_t VmaBlockMetadata_Linear::GetAllocationCount() const
+{
+ return AccessSuballocations1st().size() - (m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount) +
+ AccessSuballocations2nd().size() - m_2ndNullItemsCount;
+}
+
+VkDeviceSize VmaBlockMetadata_Linear::GetUnusedRangeSizeMax() const
+{
+ const VkDeviceSize size = GetSize();
+
+ /*
+ We don't consider gaps inside allocation vectors with freed allocations because
+ they are not suitable for reuse in linear allocator. We consider only space that
+ is available for new allocations.
+ */
+ if(IsEmpty())
+ {
+ return size;
+ }
+
+ const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+
+ switch(m_2ndVectorMode)
+ {
+ case SECOND_VECTOR_EMPTY:
+ /*
+ Available space is after end of 1st, as well as before beginning of 1st (which
+ whould make it a ring buffer).
+ */
+ {
+ const size_t suballocations1stCount = suballocations1st.size();
+ VMA_ASSERT(suballocations1stCount > m_1stNullItemsBeginCount);
+ const VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount];
+ const VmaSuballocation& lastSuballoc = suballocations1st[suballocations1stCount - 1];
+ return VMA_MAX(
+ firstSuballoc.offset,
+ size - (lastSuballoc.offset + lastSuballoc.size));
+ }
+ break;
+
+ case SECOND_VECTOR_RING_BUFFER:
+ /*
+ Available space is only between end of 2nd and beginning of 1st.
+ */
+ {
+ const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+ const VmaSuballocation& lastSuballoc2nd = suballocations2nd.back();
+ const VmaSuballocation& firstSuballoc1st = suballocations1st[m_1stNullItemsBeginCount];
+ return firstSuballoc1st.offset - (lastSuballoc2nd.offset + lastSuballoc2nd.size);
+ }
+ break;
+
+ case SECOND_VECTOR_DOUBLE_STACK:
+ /*
+ Available space is only between end of 1st and top of 2nd.
+ */
+ {
+ const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+ const VmaSuballocation& topSuballoc2nd = suballocations2nd.back();
+ const VmaSuballocation& lastSuballoc1st = suballocations1st.back();
+ return topSuballoc2nd.offset - (lastSuballoc1st.offset + lastSuballoc1st.size);
+ }
+ break;
+
+ default:
+ VMA_ASSERT(0);
+ return 0;
+ }
+}
+
+void VmaBlockMetadata_Linear::CalcAllocationStatInfo(VmaStatInfo& outInfo) const
+{
+ const VkDeviceSize size = GetSize();
+ const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+ const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+ const size_t suballoc1stCount = suballocations1st.size();
+ const size_t suballoc2ndCount = suballocations2nd.size();
+
+ outInfo.blockCount = 1;
+ outInfo.allocationCount = (uint32_t)GetAllocationCount();
+ outInfo.unusedRangeCount = 0;
+ outInfo.usedBytes = 0;
+ outInfo.allocationSizeMin = UINT64_MAX;
+ outInfo.allocationSizeMax = 0;
+ outInfo.unusedRangeSizeMin = UINT64_MAX;
+ outInfo.unusedRangeSizeMax = 0;
+
+ VkDeviceSize lastOffset = 0;
+
+ if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
+ {
+ const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
+ size_t nextAlloc2ndIndex = 0;
+ while(lastOffset < freeSpace2ndTo1stEnd)
+ {
+ // Find next non-null allocation or move nextAllocIndex to the end.
+ while(nextAlloc2ndIndex < suballoc2ndCount &&
+ suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)
+ {
+ ++nextAlloc2ndIndex;
+ }
+
+ // Found non-null allocation.
+ if(nextAlloc2ndIndex < suballoc2ndCount)
+ {
+ const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
+
+ // 1. Process free space before this allocation.
+ if(lastOffset < suballoc.offset)
+ {
+ // There is free space from lastOffset to suballoc.offset.
+ const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
+ ++outInfo.unusedRangeCount;
+ outInfo.unusedBytes += unusedRangeSize;
+ outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);
+ outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);
+ }
+
+ // 2. Process this allocation.
+ // There is allocation with suballoc.offset, suballoc.size.
+ outInfo.usedBytes += suballoc.size;
+ outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size);
+ outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size);
+
+ // 3. Prepare for next iteration.
+ lastOffset = suballoc.offset + suballoc.size;
+ ++nextAlloc2ndIndex;
+ }
+ // We are at the end.
+ else
+ {
+ // There is free space from lastOffset to freeSpace2ndTo1stEnd.
+ if(lastOffset < freeSpace2ndTo1stEnd)
+ {
+ const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;
+ ++outInfo.unusedRangeCount;
+ outInfo.unusedBytes += unusedRangeSize;
+ outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);
+ outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);
+ }
+
+ // End of loop.
+ lastOffset = freeSpace2ndTo1stEnd;
+ }
+ }
+ }
+
+ size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
+ const VkDeviceSize freeSpace1stTo2ndEnd =
+ m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
+ while(lastOffset < freeSpace1stTo2ndEnd)
+ {
+ // Find next non-null allocation or move nextAllocIndex to the end.
+ while(nextAlloc1stIndex < suballoc1stCount &&
+ suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE)
+ {
+ ++nextAlloc1stIndex;
+ }
+
+ // Found non-null allocation.
+ if(nextAlloc1stIndex < suballoc1stCount)
+ {
+ const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
+
+ // 1. Process free space before this allocation.
+ if(lastOffset < suballoc.offset)
+ {
+ // There is free space from lastOffset to suballoc.offset.
+ const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
+ ++outInfo.unusedRangeCount;
+ outInfo.unusedBytes += unusedRangeSize;
+ outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);
+ outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);
+ }
+
+ // 2. Process this allocation.
+ // There is allocation with suballoc.offset, suballoc.size.
+ outInfo.usedBytes += suballoc.size;
+ outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size);
+ outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size);
+
+ // 3. Prepare for next iteration.
+ lastOffset = suballoc.offset + suballoc.size;
+ ++nextAlloc1stIndex;
+ }
+ // We are at the end.
+ else
+ {
+ // There is free space from lastOffset to freeSpace1stTo2ndEnd.
+ if(lastOffset < freeSpace1stTo2ndEnd)
+ {
+ const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;
+ ++outInfo.unusedRangeCount;
+ outInfo.unusedBytes += unusedRangeSize;
+ outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);
+ outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);
+ }
+
+ // End of loop.
+ lastOffset = freeSpace1stTo2ndEnd;
+ }
+ }
+
+ if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
+ {
+ size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
+ while(lastOffset < size)
+ {
+ // Find next non-null allocation or move nextAllocIndex to the end.
+ while(nextAlloc2ndIndex != SIZE_MAX &&
+ suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)
+ {
+ --nextAlloc2ndIndex;
+ }
+
+ // Found non-null allocation.
+ if(nextAlloc2ndIndex != SIZE_MAX)
+ {
+ const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
+
+ // 1. Process free space before this allocation.
+ if(lastOffset < suballoc.offset)
+ {
+ // There is free space from lastOffset to suballoc.offset.
+ const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
+ ++outInfo.unusedRangeCount;
+ outInfo.unusedBytes += unusedRangeSize;
+ outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);
+ outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);
+ }
+
+ // 2. Process this allocation.
+ // There is allocation with suballoc.offset, suballoc.size.
+ outInfo.usedBytes += suballoc.size;
+ outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size);
+ outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size);
+
+ // 3. Prepare for next iteration.
+ lastOffset = suballoc.offset + suballoc.size;
+ --nextAlloc2ndIndex;
+ }
+ // We are at the end.
+ else
+ {
+ // There is free space from lastOffset to size.
+ if(lastOffset < size)
+ {
+ const VkDeviceSize unusedRangeSize = size - lastOffset;
+ ++outInfo.unusedRangeCount;
+ outInfo.unusedBytes += unusedRangeSize;
+ outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);
+ outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);
+ }
+
+ // End of loop.
+ lastOffset = size;
+ }
+ }
+ }
+
+ outInfo.unusedBytes = size - outInfo.usedBytes;
+}
+
+void VmaBlockMetadata_Linear::AddPoolStats(VmaPoolStats& inoutStats) const
+{
+ const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+ const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+ const VkDeviceSize size = GetSize();
+ const size_t suballoc1stCount = suballocations1st.size();
+ const size_t suballoc2ndCount = suballocations2nd.size();
+
+ inoutStats.size += size;
+
+ VkDeviceSize lastOffset = 0;
+
+ if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
+ {
+ const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
+ size_t nextAlloc2ndIndex = m_1stNullItemsBeginCount;
+ while(lastOffset < freeSpace2ndTo1stEnd)
+ {
+ // Find next non-null allocation or move nextAlloc2ndIndex to the end.
+ while(nextAlloc2ndIndex < suballoc2ndCount &&
+ suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)
+ {
+ ++nextAlloc2ndIndex;
+ }
+
+ // Found non-null allocation.
+ if(nextAlloc2ndIndex < suballoc2ndCount)
+ {
+ const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
+
+ // 1. Process free space before this allocation.
+ if(lastOffset < suballoc.offset)
+ {
+ // There is free space from lastOffset to suballoc.offset.
+ const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
+ inoutStats.unusedSize += unusedRangeSize;
+ ++inoutStats.unusedRangeCount;
+ inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
+ }
+
+ // 2. Process this allocation.
+ // There is allocation with suballoc.offset, suballoc.size.
+ ++inoutStats.allocationCount;
+
+ // 3. Prepare for next iteration.
+ lastOffset = suballoc.offset + suballoc.size;
+ ++nextAlloc2ndIndex;
+ }
+ // We are at the end.
+ else
+ {
+ if(lastOffset < freeSpace2ndTo1stEnd)
+ {
+ // There is free space from lastOffset to freeSpace2ndTo1stEnd.
+ const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;
+ inoutStats.unusedSize += unusedRangeSize;
+ ++inoutStats.unusedRangeCount;
+ inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
+ }
+
+ // End of loop.
+ lastOffset = freeSpace2ndTo1stEnd;
+ }
+ }
+ }
+
+ size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
+ const VkDeviceSize freeSpace1stTo2ndEnd =
+ m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
+ while(lastOffset < freeSpace1stTo2ndEnd)
+ {
+ // Find next non-null allocation or move nextAllocIndex to the end.
+ while(nextAlloc1stIndex < suballoc1stCount &&
+ suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE)
+ {
+ ++nextAlloc1stIndex;
+ }
+
+ // Found non-null allocation.
+ if(nextAlloc1stIndex < suballoc1stCount)
+ {
+ const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
+
+ // 1. Process free space before this allocation.
+ if(lastOffset < suballoc.offset)
+ {
+ // There is free space from lastOffset to suballoc.offset.
+ const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
+ inoutStats.unusedSize += unusedRangeSize;
+ ++inoutStats.unusedRangeCount;
+ inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
+ }
+
+ // 2. Process this allocation.
+ // There is allocation with suballoc.offset, suballoc.size.
+ ++inoutStats.allocationCount;
+
+ // 3. Prepare for next iteration.
+ lastOffset = suballoc.offset + suballoc.size;
+ ++nextAlloc1stIndex;
+ }
+ // We are at the end.
+ else
+ {
+ if(lastOffset < freeSpace1stTo2ndEnd)
+ {
+ // There is free space from lastOffset to freeSpace1stTo2ndEnd.
+ const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;
+ inoutStats.unusedSize += unusedRangeSize;
+ ++inoutStats.unusedRangeCount;
+ inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
+ }
+
+ // End of loop.
+ lastOffset = freeSpace1stTo2ndEnd;
+ }
+ }
+
+ if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
+ {
+ size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
+ while(lastOffset < size)
+ {
+ // Find next non-null allocation or move nextAlloc2ndIndex to the end.
+ while(nextAlloc2ndIndex != SIZE_MAX &&
+ suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)
+ {
+ --nextAlloc2ndIndex;
+ }
+
+ // Found non-null allocation.
+ if(nextAlloc2ndIndex != SIZE_MAX)
+ {
+ const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
+
+ // 1. Process free space before this allocation.
+ if(lastOffset < suballoc.offset)
+ {
+ // There is free space from lastOffset to suballoc.offset.
+ const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
+ inoutStats.unusedSize += unusedRangeSize;
+ ++inoutStats.unusedRangeCount;
+ inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
+ }
+
+ // 2. Process this allocation.
+ // There is allocation with suballoc.offset, suballoc.size.
+ ++inoutStats.allocationCount;
+
+ // 3. Prepare for next iteration.
+ lastOffset = suballoc.offset + suballoc.size;
+ --nextAlloc2ndIndex;
+ }
+ // We are at the end.
+ else
+ {
+ if(lastOffset < size)
+ {
+ // There is free space from lastOffset to size.
+ const VkDeviceSize unusedRangeSize = size - lastOffset;
+ inoutStats.unusedSize += unusedRangeSize;
+ ++inoutStats.unusedRangeCount;
+ inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
+ }
+
+ // End of loop.
+ lastOffset = size;
+ }
+ }
+ }
+}
+
+#if VMA_STATS_STRING_ENABLED
+void VmaBlockMetadata_Linear::PrintDetailedMap(class VmaJsonWriter& json) const
+{
+ const VkDeviceSize size = GetSize();
+ const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+ const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+ const size_t suballoc1stCount = suballocations1st.size();
+ const size_t suballoc2ndCount = suballocations2nd.size();
+
+ // FIRST PASS
+
+ size_t unusedRangeCount = 0;
+ VkDeviceSize usedBytes = 0;
+
+ VkDeviceSize lastOffset = 0;
+
+ size_t alloc2ndCount = 0;
+ if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
+ {
+ const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
+ size_t nextAlloc2ndIndex = 0;
+ while(lastOffset < freeSpace2ndTo1stEnd)
+ {
+ // Find next non-null allocation or move nextAlloc2ndIndex to the end.
+ while(nextAlloc2ndIndex < suballoc2ndCount &&
+ suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)
+ {
+ ++nextAlloc2ndIndex;
+ }
+
+ // Found non-null allocation.
+ if(nextAlloc2ndIndex < suballoc2ndCount)
+ {
+ const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
+
+ // 1. Process free space before this allocation.
+ if(lastOffset < suballoc.offset)
+ {
+ // There is free space from lastOffset to suballoc.offset.
+ ++unusedRangeCount;
+ }
+
+ // 2. Process this allocation.
+ // There is allocation with suballoc.offset, suballoc.size.
+ ++alloc2ndCount;
+ usedBytes += suballoc.size;
+
+ // 3. Prepare for next iteration.
+ lastOffset = suballoc.offset + suballoc.size;
+ ++nextAlloc2ndIndex;
+ }
+ // We are at the end.
+ else
+ {
+ if(lastOffset < freeSpace2ndTo1stEnd)
+ {
+ // There is free space from lastOffset to freeSpace2ndTo1stEnd.
+ ++unusedRangeCount;
+ }
+
+ // End of loop.
+ lastOffset = freeSpace2ndTo1stEnd;
+ }
+ }
+ }
+
+ size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
+ size_t alloc1stCount = 0;
+ const VkDeviceSize freeSpace1stTo2ndEnd =
+ m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
+ while(lastOffset < freeSpace1stTo2ndEnd)
+ {
+ // Find next non-null allocation or move nextAllocIndex to the end.
+ while(nextAlloc1stIndex < suballoc1stCount &&
+ suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE)
+ {
+ ++nextAlloc1stIndex;
+ }
+
+ // Found non-null allocation.
+ if(nextAlloc1stIndex < suballoc1stCount)
+ {
+ const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
+
+ // 1. Process free space before this allocation.
+ if(lastOffset < suballoc.offset)
+ {
+ // There is free space from lastOffset to suballoc.offset.
+ ++unusedRangeCount;
+ }
+
+ // 2. Process this allocation.
+ // There is allocation with suballoc.offset, suballoc.size.
+ ++alloc1stCount;
+ usedBytes += suballoc.size;
+
+ // 3. Prepare for next iteration.
+ lastOffset = suballoc.offset + suballoc.size;
+ ++nextAlloc1stIndex;
+ }
+ // We are at the end.
+ else
+ {
+ if(lastOffset < size)
+ {
+ // There is free space from lastOffset to freeSpace1stTo2ndEnd.
+ ++unusedRangeCount;
+ }
+
+ // End of loop.
+ lastOffset = freeSpace1stTo2ndEnd;
+ }
+ }
+
+ if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
+ {
+ size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
+ while(lastOffset < size)
+ {
+ // Find next non-null allocation or move nextAlloc2ndIndex to the end.
+ while(nextAlloc2ndIndex != SIZE_MAX &&
+ suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)
+ {
+ --nextAlloc2ndIndex;
+ }
+
+ // Found non-null allocation.
+ if(nextAlloc2ndIndex != SIZE_MAX)
+ {
+ const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
+
+ // 1. Process free space before this allocation.
+ if(lastOffset < suballoc.offset)
+ {
+ // There is free space from lastOffset to suballoc.offset.
+ ++unusedRangeCount;
+ }
+
+ // 2. Process this allocation.
+ // There is allocation with suballoc.offset, suballoc.size.
+ ++alloc2ndCount;
+ usedBytes += suballoc.size;
+
+ // 3. Prepare for next iteration.
+ lastOffset = suballoc.offset + suballoc.size;
+ --nextAlloc2ndIndex;
+ }
+ // We are at the end.
+ else
+ {
+ if(lastOffset < size)
+ {
+ // There is free space from lastOffset to size.
+ ++unusedRangeCount;
+ }
+
+ // End of loop.
+ lastOffset = size;
+ }
+ }
+ }
+
+ const VkDeviceSize unusedBytes = size - usedBytes;
+ PrintDetailedMap_Begin(json, unusedBytes, alloc1stCount + alloc2ndCount, unusedRangeCount);
+
+ // SECOND PASS
+ lastOffset = 0;
+
+ if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
+ {
+ const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
+ size_t nextAlloc2ndIndex = 0;
+ while(lastOffset < freeSpace2ndTo1stEnd)
+ {
+ // Find next non-null allocation or move nextAlloc2ndIndex to the end.
+ while(nextAlloc2ndIndex < suballoc2ndCount &&
+ suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)
+ {
+ ++nextAlloc2ndIndex;
+ }
+
+ // Found non-null allocation.
+ if(nextAlloc2ndIndex < suballoc2ndCount)
+ {
+ const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
+
+ // 1. Process free space before this allocation.
+ if(lastOffset < suballoc.offset)
+ {
+ // There is free space from lastOffset to suballoc.offset.
+ const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
+ PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
+ }
+
+ // 2. Process this allocation.
+ // There is allocation with suballoc.offset, suballoc.size.
+ PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation);
+
+ // 3. Prepare for next iteration.
+ lastOffset = suballoc.offset + suballoc.size;
+ ++nextAlloc2ndIndex;
+ }
+ // We are at the end.
+ else
+ {
+ if(lastOffset < freeSpace2ndTo1stEnd)
+ {
+ // There is free space from lastOffset to freeSpace2ndTo1stEnd.
+ const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;
+ PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
+ }
+
+ // End of loop.
+ lastOffset = freeSpace2ndTo1stEnd;
+ }
+ }
+ }
+
+ nextAlloc1stIndex = m_1stNullItemsBeginCount;
+ while(lastOffset < freeSpace1stTo2ndEnd)
+ {
+ // Find next non-null allocation or move nextAllocIndex to the end.
+ while(nextAlloc1stIndex < suballoc1stCount &&
+ suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE)
+ {
+ ++nextAlloc1stIndex;
+ }
+
+ // Found non-null allocation.
+ if(nextAlloc1stIndex < suballoc1stCount)
+ {
+ const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
+
+ // 1. Process free space before this allocation.
+ if(lastOffset < suballoc.offset)
+ {
+ // There is free space from lastOffset to suballoc.offset.
+ const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
+ PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
+ }
+
+ // 2. Process this allocation.
+ // There is allocation with suballoc.offset, suballoc.size.
+ PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation);
+
+ // 3. Prepare for next iteration.
+ lastOffset = suballoc.offset + suballoc.size;
+ ++nextAlloc1stIndex;
+ }
+ // We are at the end.
+ else
+ {
+ if(lastOffset < freeSpace1stTo2ndEnd)
+ {
+ // There is free space from lastOffset to freeSpace1stTo2ndEnd.
+ const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;
+ PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
+ }
+
+ // End of loop.
+ lastOffset = freeSpace1stTo2ndEnd;
+ }
+ }
+
+ if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
+ {
+ size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
+ while(lastOffset < size)
+ {
+ // Find next non-null allocation or move nextAlloc2ndIndex to the end.
+ while(nextAlloc2ndIndex != SIZE_MAX &&
+ suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)
+ {
+ --nextAlloc2ndIndex;
+ }
+
+ // Found non-null allocation.
+ if(nextAlloc2ndIndex != SIZE_MAX)
+ {
+ const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
+
+ // 1. Process free space before this allocation.
+ if(lastOffset < suballoc.offset)
+ {
+ // There is free space from lastOffset to suballoc.offset.
+ const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
+ PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
+ }
+
+ // 2. Process this allocation.
+ // There is allocation with suballoc.offset, suballoc.size.
+ PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation);
+
+ // 3. Prepare for next iteration.
+ lastOffset = suballoc.offset + suballoc.size;
+ --nextAlloc2ndIndex;
+ }
+ // We are at the end.
+ else
+ {
+ if(lastOffset < size)
+ {
+ // There is free space from lastOffset to size.
+ const VkDeviceSize unusedRangeSize = size - lastOffset;
+ PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
+ }
+
+ // End of loop.
+ lastOffset = size;
+ }
+ }
+ }
+
+ PrintDetailedMap_End(json);
+}
+#endif // #if VMA_STATS_STRING_ENABLED
+
+bool VmaBlockMetadata_Linear::CreateAllocationRequest(
+ uint32_t currentFrameIndex,
+ uint32_t frameInUseCount,
+ VkDeviceSize bufferImageGranularity,
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ bool upperAddress,
+ VmaSuballocationType allocType,
+ bool canMakeOtherLost,
+ uint32_t strategy,
+ VmaAllocationRequest* pAllocationRequest)
+{
+ VMA_ASSERT(allocSize > 0);
+ VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
+ VMA_ASSERT(pAllocationRequest != VMA_NULL);
+ VMA_HEAVY_ASSERT(Validate());
+ return upperAddress ?
+ CreateAllocationRequest_UpperAddress(
+ currentFrameIndex, frameInUseCount, bufferImageGranularity,
+ allocSize, allocAlignment, allocType, canMakeOtherLost, strategy, pAllocationRequest) :
+ CreateAllocationRequest_LowerAddress(
+ currentFrameIndex, frameInUseCount, bufferImageGranularity,
+ allocSize, allocAlignment, allocType, canMakeOtherLost, strategy, pAllocationRequest);
+}
+
+bool VmaBlockMetadata_Linear::CreateAllocationRequest_UpperAddress(
+ uint32_t currentFrameIndex,
+ uint32_t frameInUseCount,
+ VkDeviceSize bufferImageGranularity,
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ VmaSuballocationType allocType,
+ bool canMakeOtherLost,
+ uint32_t strategy,
+ VmaAllocationRequest* pAllocationRequest)
+{
+ const VkDeviceSize size = GetSize();
+ SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+ SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+
+ if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
+ {
+ VMA_ASSERT(0 && "Trying to use pool with linear algorithm as double stack, while it is already being used as ring buffer.");
+ return false;
+ }
+
+ // Try to allocate before 2nd.back(), or end of block if 2nd.empty().
+ if(allocSize > size)
+ {
+ return false;
+ }
+ VkDeviceSize resultBaseOffset = size - allocSize;
+ if(!suballocations2nd.empty())
+ {
+ const VmaSuballocation& lastSuballoc = suballocations2nd.back();
+ resultBaseOffset = lastSuballoc.offset - allocSize;
+ if(allocSize > lastSuballoc.offset)
+ {
+ return false;
+ }
+ }
+
+ // Start from offset equal to end of free space.
+ VkDeviceSize resultOffset = resultBaseOffset;
+
+ // Apply VMA_DEBUG_MARGIN at the end.
+ if(VMA_DEBUG_MARGIN > 0)
+ {
+ if(resultOffset < VMA_DEBUG_MARGIN)
+ {
+ return false;
+ }
+ resultOffset -= VMA_DEBUG_MARGIN;
+ }
+
+ // Apply alignment.
+ resultOffset = VmaAlignDown(resultOffset, allocAlignment);
+
+ // Check next suballocations from 2nd for BufferImageGranularity conflicts.
+ // Make bigger alignment if necessary.
+ if(bufferImageGranularity > 1 && !suballocations2nd.empty())
+ {
+ bool bufferImageGranularityConflict = false;
+ for(size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; )
+ {
+ const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex];
+ if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
+ {
+ if(VmaIsBufferImageGranularityConflict(nextSuballoc.type, allocType))
+ {
+ bufferImageGranularityConflict = true;
+ break;
+ }
+ }
+ else
+ // Already on previous page.
+ break;
+ }
+ if(bufferImageGranularityConflict)
+ {
+ resultOffset = VmaAlignDown(resultOffset, bufferImageGranularity);
+ }
+ }
+
+ // There is enough free space.
+ const VkDeviceSize endOf1st = !suballocations1st.empty() ?
+ suballocations1st.back().offset + suballocations1st.back().size :
+ 0;
+ if(endOf1st + VMA_DEBUG_MARGIN <= resultOffset)
+ {
+ // Check previous suballocations for BufferImageGranularity conflicts.
+ // If conflict exists, allocation cannot be made here.
+ if(bufferImageGranularity > 1)
+ {
+ for(size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; )
+ {
+ const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex];
+ if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
+ {
+ if(VmaIsBufferImageGranularityConflict(allocType, prevSuballoc.type))
+ {
+ return false;
+ }
+ }
+ else
+ {
+ // Already on next page.
+ break;
+ }
+ }
+ }
+
+ // All tests passed: Success.
+ pAllocationRequest->offset = resultOffset;
+ pAllocationRequest->sumFreeSize = resultBaseOffset + allocSize - endOf1st;
+ pAllocationRequest->sumItemSize = 0;
+ // pAllocationRequest->item unused.
+ pAllocationRequest->itemsToMakeLostCount = 0;
+ pAllocationRequest->type = VmaAllocationRequestType::UpperAddress;
+ return true;
+ }
+
+ return false;
+}
+
+bool VmaBlockMetadata_Linear::CreateAllocationRequest_LowerAddress(
+ uint32_t currentFrameIndex,
+ uint32_t frameInUseCount,
+ VkDeviceSize bufferImageGranularity,
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ VmaSuballocationType allocType,
+ bool canMakeOtherLost,
+ uint32_t strategy,
+ VmaAllocationRequest* pAllocationRequest)
+{
+ const VkDeviceSize size = GetSize();
+ SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+ SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+
+ if(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
+ {
+ // Try to allocate at the end of 1st vector.
+
+ VkDeviceSize resultBaseOffset = 0;
+ if(!suballocations1st.empty())
+ {
+ const VmaSuballocation& lastSuballoc = suballocations1st.back();
+ resultBaseOffset = lastSuballoc.offset + lastSuballoc.size;
+ }
+
+ // Start from offset equal to beginning of free space.
+ VkDeviceSize resultOffset = resultBaseOffset;
+
+ // Apply VMA_DEBUG_MARGIN at the beginning.
+ if(VMA_DEBUG_MARGIN > 0)
+ {
+ resultOffset += VMA_DEBUG_MARGIN;
+ }
+
+ // Apply alignment.
+ resultOffset = VmaAlignUp(resultOffset, allocAlignment);
+
+ // Check previous suballocations for BufferImageGranularity conflicts.
+ // Make bigger alignment if necessary.
+ if(bufferImageGranularity > 1 && !suballocations1st.empty())
+ {
+ bool bufferImageGranularityConflict = false;
+ for(size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; )
+ {
+ const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex];
+ if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
+ {
+ if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
+ {
+ bufferImageGranularityConflict = true;
+ break;
+ }
+ }
+ else
+ // Already on previous page.
+ break;
+ }
+ if(bufferImageGranularityConflict)
+ {
+ resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity);
+ }
+ }
+
+ const VkDeviceSize freeSpaceEnd = m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ?
+ suballocations2nd.back().offset : size;
+
+ // There is enough free space at the end after alignment.
+ if(resultOffset + allocSize + VMA_DEBUG_MARGIN <= freeSpaceEnd)
+ {
+ // Check next suballocations for BufferImageGranularity conflicts.
+ // If conflict exists, allocation cannot be made here.
+ if(bufferImageGranularity > 1 && m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
+ {
+ for(size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; )
+ {
+ const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex];
+ if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
+ {
+ if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
+ {
+ return false;
+ }
+ }
+ else
+ {
+ // Already on previous page.
+ break;
+ }
+ }
+ }
+
+ // All tests passed: Success.
+ pAllocationRequest->offset = resultOffset;
+ pAllocationRequest->sumFreeSize = freeSpaceEnd - resultBaseOffset;
+ pAllocationRequest->sumItemSize = 0;
+ // pAllocationRequest->item, customData unused.
+ pAllocationRequest->type = VmaAllocationRequestType::EndOf1st;
+ pAllocationRequest->itemsToMakeLostCount = 0;
+ return true;
+ }
+ }
+
+ // Wrap-around to end of 2nd vector. Try to allocate there, watching for the
+ // beginning of 1st vector as the end of free space.
+ if(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
+ {
+ VMA_ASSERT(!suballocations1st.empty());
+
+ VkDeviceSize resultBaseOffset = 0;
+ if(!suballocations2nd.empty())
+ {
+ const VmaSuballocation& lastSuballoc = suballocations2nd.back();
+ resultBaseOffset = lastSuballoc.offset + lastSuballoc.size;
+ }
+
+ // Start from offset equal to beginning of free space.
+ VkDeviceSize resultOffset = resultBaseOffset;
+
+ // Apply VMA_DEBUG_MARGIN at the beginning.
+ if(VMA_DEBUG_MARGIN > 0)
+ {
+ resultOffset += VMA_DEBUG_MARGIN;
+ }
+
+ // Apply alignment.
+ resultOffset = VmaAlignUp(resultOffset, allocAlignment);
+
+ // Check previous suballocations for BufferImageGranularity conflicts.
+ // Make bigger alignment if necessary.
+ if(bufferImageGranularity > 1 && !suballocations2nd.empty())
+ {
+ bool bufferImageGranularityConflict = false;
+ for(size_t prevSuballocIndex = suballocations2nd.size(); prevSuballocIndex--; )
+ {
+ const VmaSuballocation& prevSuballoc = suballocations2nd[prevSuballocIndex];
+ if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
+ {
+ if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
+ {
+ bufferImageGranularityConflict = true;
+ break;
+ }
+ }
+ else
+ // Already on previous page.
+ break;
+ }
+ if(bufferImageGranularityConflict)
+ {
+ resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity);
+ }
+ }
+
+ pAllocationRequest->itemsToMakeLostCount = 0;
+ pAllocationRequest->sumItemSize = 0;
+ size_t index1st = m_1stNullItemsBeginCount;
+
+ if(canMakeOtherLost)
+ {
+ while(index1st < suballocations1st.size() &&
+ resultOffset + allocSize + VMA_DEBUG_MARGIN > suballocations1st[index1st].offset)
+ {
+ // Next colliding allocation at the beginning of 1st vector found. Try to make it lost.
+ const VmaSuballocation& suballoc = suballocations1st[index1st];
+ if(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ // No problem.
+ }
+ else
+ {
+ VMA_ASSERT(suballoc.hAllocation != VK_NULL_HANDLE);
+ if(suballoc.hAllocation->CanBecomeLost() &&
+ suballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
+ {
+ ++pAllocationRequest->itemsToMakeLostCount;
+ pAllocationRequest->sumItemSize += suballoc.size;
+ }
+ else
+ {
+ return false;
+ }
+ }
+ ++index1st;
+ }
+
+ // Check next suballocations for BufferImageGranularity conflicts.
+ // If conflict exists, we must mark more allocations lost or fail.
+ if(bufferImageGranularity > 1)
+ {
+ while(index1st < suballocations1st.size())
+ {
+ const VmaSuballocation& suballoc = suballocations1st[index1st];
+ if(VmaBlocksOnSamePage(resultOffset, allocSize, suballoc.offset, bufferImageGranularity))
+ {
+ if(suballoc.hAllocation != VK_NULL_HANDLE)
+ {
+ // Not checking actual VmaIsBufferImageGranularityConflict(allocType, suballoc.type).
+ if(suballoc.hAllocation->CanBecomeLost() &&
+ suballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
+ {
+ ++pAllocationRequest->itemsToMakeLostCount;
+ pAllocationRequest->sumItemSize += suballoc.size;
+ }
+ else
+ {
+ return false;
+ }
+ }
+ }
+ else
+ {
+ // Already on next page.
+ break;
+ }
+ ++index1st;
+ }
+ }
+
+ // Special case: There is not enough room at the end for this allocation, even after making all from the 1st lost.
+ if(index1st == suballocations1st.size() &&
+ resultOffset + allocSize + VMA_DEBUG_MARGIN > size)
+ {
+ // TODO: This is a known bug that it's not yet implemented and the allocation is failing.
+ VMA_DEBUG_LOG("Unsupported special case in custom pool with linear allocation algorithm used as ring buffer with allocations that can be lost.");
+ }
+ }
+
+ // There is enough free space at the end after alignment.
+ if((index1st == suballocations1st.size() && resultOffset + allocSize + VMA_DEBUG_MARGIN <= size) ||
+ (index1st < suballocations1st.size() && resultOffset + allocSize + VMA_DEBUG_MARGIN <= suballocations1st[index1st].offset))
+ {
+ // Check next suballocations for BufferImageGranularity conflicts.
+ // If conflict exists, allocation cannot be made here.
+ if(bufferImageGranularity > 1)
+ {
+ for(size_t nextSuballocIndex = index1st;
+ nextSuballocIndex < suballocations1st.size();
+ nextSuballocIndex++)
+ {
+ const VmaSuballocation& nextSuballoc = suballocations1st[nextSuballocIndex];
+ if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
+ {
+ if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
+ {
+ return false;
+ }
+ }
+ else
+ {
+ // Already on next page.
+ break;
+ }
+ }
+ }
+
+ // All tests passed: Success.
+ pAllocationRequest->offset = resultOffset;
+ pAllocationRequest->sumFreeSize =
+ (index1st < suballocations1st.size() ? suballocations1st[index1st].offset : size)
+ - resultBaseOffset
+ - pAllocationRequest->sumItemSize;
+ pAllocationRequest->type = VmaAllocationRequestType::EndOf2nd;
+ // pAllocationRequest->item, customData unused.
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool VmaBlockMetadata_Linear::MakeRequestedAllocationsLost(
+ uint32_t currentFrameIndex,
+ uint32_t frameInUseCount,
+ VmaAllocationRequest* pAllocationRequest)
+{
+ if(pAllocationRequest->itemsToMakeLostCount == 0)
+ {
+ return true;
+ }
+
+ VMA_ASSERT(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER);
+
+ // We always start from 1st.
+ SuballocationVectorType* suballocations = &AccessSuballocations1st();
+ size_t index = m_1stNullItemsBeginCount;
+ size_t madeLostCount = 0;
+ while(madeLostCount < pAllocationRequest->itemsToMakeLostCount)
+ {
+ if(index == suballocations->size())
+ {
+ index = 0;
+ // If we get to the end of 1st, we wrap around to beginning of 2nd of 1st.
+ if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
+ {
+ suballocations = &AccessSuballocations2nd();
+ }
+ // else: m_2ndVectorMode == SECOND_VECTOR_EMPTY:
+ // suballocations continues pointing at AccessSuballocations1st().
+ VMA_ASSERT(!suballocations->empty());
+ }
+ VmaSuballocation& suballoc = (*suballocations)[index];
+ if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ VMA_ASSERT(suballoc.hAllocation != VK_NULL_HANDLE);
+ VMA_ASSERT(suballoc.hAllocation->CanBecomeLost());
+ if(suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount))
+ {
+ suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
+ suballoc.hAllocation = VK_NULL_HANDLE;
+ m_SumFreeSize += suballoc.size;
+ if(suballocations == &AccessSuballocations1st())
+ {
+ ++m_1stNullItemsMiddleCount;
+ }
+ else
+ {
+ ++m_2ndNullItemsCount;
+ }
+ ++madeLostCount;
+ }
+ else
+ {
+ return false;
+ }
+ }
+ ++index;
+ }
+
+ CleanupAfterFree();
+ //VMA_HEAVY_ASSERT(Validate()); // Already called by ClanupAfterFree().
+
+ return true;
+}
+
+uint32_t VmaBlockMetadata_Linear::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)
+{
+ uint32_t lostAllocationCount = 0;
+
+ SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+ for(size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i)
+ {
+ VmaSuballocation& suballoc = suballocations1st[i];
+ if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE &&
+ suballoc.hAllocation->CanBecomeLost() &&
+ suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount))
+ {
+ suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
+ suballoc.hAllocation = VK_NULL_HANDLE;
+ ++m_1stNullItemsMiddleCount;
+ m_SumFreeSize += suballoc.size;
+ ++lostAllocationCount;
+ }
+ }
+
+ SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+ for(size_t i = 0, count = suballocations2nd.size(); i < count; ++i)
+ {
+ VmaSuballocation& suballoc = suballocations2nd[i];
+ if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE &&
+ suballoc.hAllocation->CanBecomeLost() &&
+ suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount))
+ {
+ suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
+ suballoc.hAllocation = VK_NULL_HANDLE;
+ ++m_2ndNullItemsCount;
+ m_SumFreeSize += suballoc.size;
+ ++lostAllocationCount;
+ }
+ }
+
+ if(lostAllocationCount)
+ {
+ CleanupAfterFree();
+ }
+
+ return lostAllocationCount;
+}
+
+VkResult VmaBlockMetadata_Linear::CheckCorruption(const void* pBlockData)
+{
+ SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+ for(size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i)
+ {
+ const VmaSuballocation& suballoc = suballocations1st[i];
+ if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ if(!VmaValidateMagicValue(pBlockData, suballoc.offset - VMA_DEBUG_MARGIN))
+ {
+ VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!");
+ return VK_ERROR_VALIDATION_FAILED_EXT;
+ }
+ if(!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size))
+ {
+ VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
+ return VK_ERROR_VALIDATION_FAILED_EXT;
+ }
+ }
+ }
+
+ SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+ for(size_t i = 0, count = suballocations2nd.size(); i < count; ++i)
+ {
+ const VmaSuballocation& suballoc = suballocations2nd[i];
+ if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ if(!VmaValidateMagicValue(pBlockData, suballoc.offset - VMA_DEBUG_MARGIN))
+ {
+ VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!");
+ return VK_ERROR_VALIDATION_FAILED_EXT;
+ }
+ if(!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size))
+ {
+ VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
+ return VK_ERROR_VALIDATION_FAILED_EXT;
+ }
+ }
+ }
+
+ return VK_SUCCESS;
+}
+
+void VmaBlockMetadata_Linear::Alloc(
+ const VmaAllocationRequest& request,
+ VmaSuballocationType type,
+ VkDeviceSize allocSize,
+ VmaAllocation hAllocation)
+{
+ const VmaSuballocation newSuballoc = { request.offset, allocSize, hAllocation, type };
+
+ switch(request.type)
+ {
+ case VmaAllocationRequestType::UpperAddress:
+ {
+ VMA_ASSERT(m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER &&
+ "CRITICAL ERROR: Trying to use linear allocator as double stack while it was already used as ring buffer.");
+ SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+ suballocations2nd.push_back(newSuballoc);
+ m_2ndVectorMode = SECOND_VECTOR_DOUBLE_STACK;
+ }
+ break;
+ case VmaAllocationRequestType::EndOf1st:
+ {
+ SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+
+ VMA_ASSERT(suballocations1st.empty() ||
+ request.offset >= suballocations1st.back().offset + suballocations1st.back().size);
+ // Check if it fits before the end of the block.
+ VMA_ASSERT(request.offset + allocSize <= GetSize());
+
+ suballocations1st.push_back(newSuballoc);
+ }
+ break;
+ case VmaAllocationRequestType::EndOf2nd:
+ {
+ SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+ // New allocation at the end of 2-part ring buffer, so before first allocation from 1st vector.
+ VMA_ASSERT(!suballocations1st.empty() &&
+ request.offset + allocSize <= suballocations1st[m_1stNullItemsBeginCount].offset);
+ SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+
+ switch(m_2ndVectorMode)
+ {
+ case SECOND_VECTOR_EMPTY:
+ // First allocation from second part ring buffer.
+ VMA_ASSERT(suballocations2nd.empty());
+ m_2ndVectorMode = SECOND_VECTOR_RING_BUFFER;
+ break;
+ case SECOND_VECTOR_RING_BUFFER:
+ // 2-part ring buffer is already started.
+ VMA_ASSERT(!suballocations2nd.empty());
+ break;
+ case SECOND_VECTOR_DOUBLE_STACK:
+ VMA_ASSERT(0 && "CRITICAL ERROR: Trying to use linear allocator as ring buffer while it was already used as double stack.");
+ break;
+ default:
+ VMA_ASSERT(0);
+ }
+
+ suballocations2nd.push_back(newSuballoc);
+ }
+ break;
+ default:
+ VMA_ASSERT(0 && "CRITICAL INTERNAL ERROR.");
+ }
+
+ m_SumFreeSize -= newSuballoc.size;
+}
+
+void VmaBlockMetadata_Linear::Free(const VmaAllocation allocation)
+{
+ FreeAtOffset(allocation->GetOffset());
+}
+
+void VmaBlockMetadata_Linear::FreeAtOffset(VkDeviceSize offset)
+{
+ SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+ SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+
+ if(!suballocations1st.empty())
+ {
+ // First allocation: Mark it as next empty at the beginning.
+ VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount];
+ if(firstSuballoc.offset == offset)
+ {
+ firstSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
+ firstSuballoc.hAllocation = VK_NULL_HANDLE;
+ m_SumFreeSize += firstSuballoc.size;
+ ++m_1stNullItemsBeginCount;
+ CleanupAfterFree();
+ return;
+ }
+ }
+
+ // Last allocation in 2-part ring buffer or top of upper stack (same logic).
+ if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ||
+ m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
+ {
+ VmaSuballocation& lastSuballoc = suballocations2nd.back();
+ if(lastSuballoc.offset == offset)
+ {
+ m_SumFreeSize += lastSuballoc.size;
+ suballocations2nd.pop_back();
+ CleanupAfterFree();
+ return;
+ }
+ }
+ // Last allocation in 1st vector.
+ else if(m_2ndVectorMode == SECOND_VECTOR_EMPTY)
+ {
+ VmaSuballocation& lastSuballoc = suballocations1st.back();
+ if(lastSuballoc.offset == offset)
+ {
+ m_SumFreeSize += lastSuballoc.size;
+ suballocations1st.pop_back();
+ CleanupAfterFree();
+ return;
+ }
+ }
+
+ // Item from the middle of 1st vector.
+ {
+ VmaSuballocation refSuballoc;
+ refSuballoc.offset = offset;
+ // Rest of members stays uninitialized intentionally for better performance.
+ SuballocationVectorType::iterator it = VmaBinaryFindSorted(
+ suballocations1st.begin() + m_1stNullItemsBeginCount,
+ suballocations1st.end(),
+ refSuballoc,
+ VmaSuballocationOffsetLess());
+ if(it != suballocations1st.end())
+ {
+ it->type = VMA_SUBALLOCATION_TYPE_FREE;
+ it->hAllocation = VK_NULL_HANDLE;
+ ++m_1stNullItemsMiddleCount;
+ m_SumFreeSize += it->size;
+ CleanupAfterFree();
+ return;
+ }
+ }
+
+ if(m_2ndVectorMode != SECOND_VECTOR_EMPTY)
+ {
+ // Item from the middle of 2nd vector.
+ VmaSuballocation refSuballoc;
+ refSuballoc.offset = offset;
+ // Rest of members stays uninitialized intentionally for better performance.
+ SuballocationVectorType::iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ?
+ VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) :
+ VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater());
+ if(it != suballocations2nd.end())
+ {
+ it->type = VMA_SUBALLOCATION_TYPE_FREE;
+ it->hAllocation = VK_NULL_HANDLE;
+ ++m_2ndNullItemsCount;
+ m_SumFreeSize += it->size;
+ CleanupAfterFree();
+ return;
+ }
+ }
+
+ VMA_ASSERT(0 && "Allocation to free not found in linear allocator!");
+}
+
+bool VmaBlockMetadata_Linear::ShouldCompact1st() const
+{
+ const size_t nullItemCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount;
+ const size_t suballocCount = AccessSuballocations1st().size();
+ return suballocCount > 32 && nullItemCount * 2 >= (suballocCount - nullItemCount) * 3;
+}
+
+void VmaBlockMetadata_Linear::CleanupAfterFree()
+{
+ SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+ SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+
+ if(IsEmpty())
+ {
+ suballocations1st.clear();
+ suballocations2nd.clear();
+ m_1stNullItemsBeginCount = 0;
+ m_1stNullItemsMiddleCount = 0;
+ m_2ndNullItemsCount = 0;
+ m_2ndVectorMode = SECOND_VECTOR_EMPTY;
+ }
+ else
+ {
+ const size_t suballoc1stCount = suballocations1st.size();
+ const size_t nullItem1stCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount;
+ VMA_ASSERT(nullItem1stCount <= suballoc1stCount);
+
+ // Find more null items at the beginning of 1st vector.
+ while(m_1stNullItemsBeginCount < suballoc1stCount &&
+ suballocations1st[m_1stNullItemsBeginCount].hAllocation == VK_NULL_HANDLE)
+ {
+ ++m_1stNullItemsBeginCount;
+ --m_1stNullItemsMiddleCount;
+ }
+
+ // Find more null items at the end of 1st vector.
+ while(m_1stNullItemsMiddleCount > 0 &&
+ suballocations1st.back().hAllocation == VK_NULL_HANDLE)
+ {
+ --m_1stNullItemsMiddleCount;
+ suballocations1st.pop_back();
+ }
+
+ // Find more null items at the end of 2nd vector.
+ while(m_2ndNullItemsCount > 0 &&
+ suballocations2nd.back().hAllocation == VK_NULL_HANDLE)
+ {
+ --m_2ndNullItemsCount;
+ suballocations2nd.pop_back();
+ }
+
+ // Find more null items at the beginning of 2nd vector.
+ while(m_2ndNullItemsCount > 0 &&
+ suballocations2nd[0].hAllocation == VK_NULL_HANDLE)
+ {
+ --m_2ndNullItemsCount;
+ VmaVectorRemove(suballocations2nd, 0);
+ }
+
+ if(ShouldCompact1st())
+ {
+ const size_t nonNullItemCount = suballoc1stCount - nullItem1stCount;
+ size_t srcIndex = m_1stNullItemsBeginCount;
+ for(size_t dstIndex = 0; dstIndex < nonNullItemCount; ++dstIndex)
+ {
+ while(suballocations1st[srcIndex].hAllocation == VK_NULL_HANDLE)
+ {
+ ++srcIndex;
+ }
+ if(dstIndex != srcIndex)
+ {
+ suballocations1st[dstIndex] = suballocations1st[srcIndex];
+ }
+ ++srcIndex;
+ }
+ suballocations1st.resize(nonNullItemCount);
+ m_1stNullItemsBeginCount = 0;
+ m_1stNullItemsMiddleCount = 0;
+ }
+
+ // 2nd vector became empty.
+ if(suballocations2nd.empty())
+ {
+ m_2ndVectorMode = SECOND_VECTOR_EMPTY;
+ }
+
+ // 1st vector became empty.
+ if(suballocations1st.size() - m_1stNullItemsBeginCount == 0)
+ {
+ suballocations1st.clear();
+ m_1stNullItemsBeginCount = 0;
+
+ if(!suballocations2nd.empty() && m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
+ {
+ // Swap 1st with 2nd. Now 2nd is empty.
+ m_2ndVectorMode = SECOND_VECTOR_EMPTY;
+ m_1stNullItemsMiddleCount = m_2ndNullItemsCount;
+ while(m_1stNullItemsBeginCount < suballocations2nd.size() &&
+ suballocations2nd[m_1stNullItemsBeginCount].hAllocation == VK_NULL_HANDLE)
+ {
+ ++m_1stNullItemsBeginCount;
+ --m_1stNullItemsMiddleCount;
+ }
+ m_2ndNullItemsCount = 0;
+ m_1stVectorIndex ^= 1;
+ }
+ }
+ }
+
+ VMA_HEAVY_ASSERT(Validate());
+}
+
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaBlockMetadata_Buddy
+
+VmaBlockMetadata_Buddy::VmaBlockMetadata_Buddy(VmaAllocator hAllocator) :
+ VmaBlockMetadata(hAllocator),
+ m_Root(VMA_NULL),
+ m_AllocationCount(0),
+ m_FreeCount(1),
+ m_SumFreeSize(0)
+{
+ memset(m_FreeList, 0, sizeof(m_FreeList));
+}
+
+VmaBlockMetadata_Buddy::~VmaBlockMetadata_Buddy()
+{
+ DeleteNode(m_Root);
+}
+
+void VmaBlockMetadata_Buddy::Init(VkDeviceSize size)
+{
+ VmaBlockMetadata::Init(size);
+
+ m_UsableSize = VmaPrevPow2(size);
+ m_SumFreeSize = m_UsableSize;
+
+ // Calculate m_LevelCount.
+ m_LevelCount = 1;
+ while(m_LevelCount < MAX_LEVELS &&
+ LevelToNodeSize(m_LevelCount) >= MIN_NODE_SIZE)
+ {
+ ++m_LevelCount;
+ }
+
+ Node* rootNode = vma_new(GetAllocationCallbacks(), Node)();
+ rootNode->offset = 0;
+ rootNode->type = Node::TYPE_FREE;
+ rootNode->parent = VMA_NULL;
+ rootNode->buddy = VMA_NULL;
+
+ m_Root = rootNode;
+ AddToFreeListFront(0, rootNode);
+}
+
+bool VmaBlockMetadata_Buddy::Validate() const
+{
+ // Validate tree.
+ ValidationContext ctx;
+ if(!ValidateNode(ctx, VMA_NULL, m_Root, 0, LevelToNodeSize(0)))
+ {
+ VMA_VALIDATE(false && "ValidateNode failed.");
+ }
+ VMA_VALIDATE(m_AllocationCount == ctx.calculatedAllocationCount);
+ VMA_VALIDATE(m_SumFreeSize == ctx.calculatedSumFreeSize);
+
+ // Validate free node lists.
+ for(uint32_t level = 0; level < m_LevelCount; ++level)
+ {
+ VMA_VALIDATE(m_FreeList[level].front == VMA_NULL ||
+ m_FreeList[level].front->free.prev == VMA_NULL);
+
+ for(Node* node = m_FreeList[level].front;
+ node != VMA_NULL;
+ node = node->free.next)
+ {
+ VMA_VALIDATE(node->type == Node::TYPE_FREE);
+
+ if(node->free.next == VMA_NULL)
+ {
+ VMA_VALIDATE(m_FreeList[level].back == node);
+ }
+ else
+ {
+ VMA_VALIDATE(node->free.next->free.prev == node);
+ }
+ }
+ }
+
+ // Validate that free lists ar higher levels are empty.
+ for(uint32_t level = m_LevelCount; level < MAX_LEVELS; ++level)
+ {
+ VMA_VALIDATE(m_FreeList[level].front == VMA_NULL && m_FreeList[level].back == VMA_NULL);
+ }
+
+ return true;
+}
+
+VkDeviceSize VmaBlockMetadata_Buddy::GetUnusedRangeSizeMax() const
+{
+ for(uint32_t level = 0; level < m_LevelCount; ++level)
+ {
+ if(m_FreeList[level].front != VMA_NULL)
+ {
+ return LevelToNodeSize(level);
+ }
+ }
+ return 0;
+}
+
+void VmaBlockMetadata_Buddy::CalcAllocationStatInfo(VmaStatInfo& outInfo) const
+{
+ const VkDeviceSize unusableSize = GetUnusableSize();
+
+ outInfo.blockCount = 1;
+
+ outInfo.allocationCount = outInfo.unusedRangeCount = 0;
+ outInfo.usedBytes = outInfo.unusedBytes = 0;
+
+ outInfo.allocationSizeMax = outInfo.unusedRangeSizeMax = 0;
+ outInfo.allocationSizeMin = outInfo.unusedRangeSizeMin = UINT64_MAX;
+ outInfo.allocationSizeAvg = outInfo.unusedRangeSizeAvg = 0; // Unused.
+
+ CalcAllocationStatInfoNode(outInfo, m_Root, LevelToNodeSize(0));
+
+ if(unusableSize > 0)
+ {
+ ++outInfo.unusedRangeCount;
+ outInfo.unusedBytes += unusableSize;
+ outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, unusableSize);
+ outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusableSize);
+ }
+}
+
+void VmaBlockMetadata_Buddy::AddPoolStats(VmaPoolStats& inoutStats) const
+{
+ const VkDeviceSize unusableSize = GetUnusableSize();
+
+ inoutStats.size += GetSize();
+ inoutStats.unusedSize += m_SumFreeSize + unusableSize;
+ inoutStats.allocationCount += m_AllocationCount;
+ inoutStats.unusedRangeCount += m_FreeCount;
+ inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax());
+
+ if(unusableSize > 0)
+ {
+ ++inoutStats.unusedRangeCount;
+ // Not updating inoutStats.unusedRangeSizeMax with unusableSize because this space is not available for allocations.
+ }
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+void VmaBlockMetadata_Buddy::PrintDetailedMap(class VmaJsonWriter& json) const
+{
+ // TODO optimize
+ VmaStatInfo stat;
+ CalcAllocationStatInfo(stat);
+
+ PrintDetailedMap_Begin(
+ json,
+ stat.unusedBytes,
+ stat.allocationCount,
+ stat.unusedRangeCount);
+
+ PrintDetailedMapNode(json, m_Root, LevelToNodeSize(0));
+
+ const VkDeviceSize unusableSize = GetUnusableSize();
+ if(unusableSize > 0)
+ {
+ PrintDetailedMap_UnusedRange(json,
+ m_UsableSize, // offset
+ unusableSize); // size
+ }
+
+ PrintDetailedMap_End(json);
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+bool VmaBlockMetadata_Buddy::CreateAllocationRequest(
+ uint32_t currentFrameIndex,
+ uint32_t frameInUseCount,
+ VkDeviceSize bufferImageGranularity,
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ bool upperAddress,
+ VmaSuballocationType allocType,
+ bool canMakeOtherLost,
+ uint32_t strategy,
+ VmaAllocationRequest* pAllocationRequest)
+{
+ VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm.");
+
+ // Simple way to respect bufferImageGranularity. May be optimized some day.
+ // Whenever it might be an OPTIMAL image...
+ if(allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN ||
+ allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
+ allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL)
+ {
+ allocAlignment = VMA_MAX(allocAlignment, bufferImageGranularity);
+ allocSize = VMA_MAX(allocSize, bufferImageGranularity);
+ }
+
+ if(allocSize > m_UsableSize)
+ {
+ return false;
+ }
+
+ const uint32_t targetLevel = AllocSizeToLevel(allocSize);
+ for(uint32_t level = targetLevel + 1; level--; )
+ {
+ for(Node* freeNode = m_FreeList[level].front;
+ freeNode != VMA_NULL;
+ freeNode = freeNode->free.next)
+ {
+ if(freeNode->offset % allocAlignment == 0)
+ {
+ pAllocationRequest->type = VmaAllocationRequestType::Normal;
+ pAllocationRequest->offset = freeNode->offset;
+ pAllocationRequest->sumFreeSize = LevelToNodeSize(level);
+ pAllocationRequest->sumItemSize = 0;
+ pAllocationRequest->itemsToMakeLostCount = 0;
+ pAllocationRequest->customData = (void*)(uintptr_t)level;
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+bool VmaBlockMetadata_Buddy::MakeRequestedAllocationsLost(
+ uint32_t currentFrameIndex,
+ uint32_t frameInUseCount,
+ VmaAllocationRequest* pAllocationRequest)
+{
+ /*
+ Lost allocations are not supported in buddy allocator at the moment.
+ Support might be added in the future.
+ */
+ return pAllocationRequest->itemsToMakeLostCount == 0;
+}
+
+uint32_t VmaBlockMetadata_Buddy::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)
+{
+ /*
+ Lost allocations are not supported in buddy allocator at the moment.
+ Support might be added in the future.
+ */
+ return 0;
+}
+
+void VmaBlockMetadata_Buddy::Alloc(
+ const VmaAllocationRequest& request,
+ VmaSuballocationType type,
+ VkDeviceSize allocSize,
+ VmaAllocation hAllocation)
+{
+ VMA_ASSERT(request.type == VmaAllocationRequestType::Normal);
+
+ const uint32_t targetLevel = AllocSizeToLevel(allocSize);
+ uint32_t currLevel = (uint32_t)(uintptr_t)request.customData;
+
+ Node* currNode = m_FreeList[currLevel].front;
+ VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE);
+ while(currNode->offset != request.offset)
+ {
+ currNode = currNode->free.next;
+ VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE);
+ }
+
+ // Go down, splitting free nodes.
+ while(currLevel < targetLevel)
+ {
+ // currNode is already first free node at currLevel.
+ // Remove it from list of free nodes at this currLevel.
+ RemoveFromFreeList(currLevel, currNode);
+
+ const uint32_t childrenLevel = currLevel + 1;
+
+ // Create two free sub-nodes.
+ Node* leftChild = vma_new(GetAllocationCallbacks(), Node)();
+ Node* rightChild = vma_new(GetAllocationCallbacks(), Node)();
+
+ leftChild->offset = currNode->offset;
+ leftChild->type = Node::TYPE_FREE;
+ leftChild->parent = currNode;
+ leftChild->buddy = rightChild;
+
+ rightChild->offset = currNode->offset + LevelToNodeSize(childrenLevel);
+ rightChild->type = Node::TYPE_FREE;
+ rightChild->parent = currNode;
+ rightChild->buddy = leftChild;
+
+ // Convert current currNode to split type.
+ currNode->type = Node::TYPE_SPLIT;
+ currNode->split.leftChild = leftChild;
+
+ // Add child nodes to free list. Order is important!
+ AddToFreeListFront(childrenLevel, rightChild);
+ AddToFreeListFront(childrenLevel, leftChild);
+
+ ++m_FreeCount;
+ //m_SumFreeSize -= LevelToNodeSize(currLevel) % 2; // Useful only when level node sizes can be non power of 2.
+ ++currLevel;
+ currNode = m_FreeList[currLevel].front;
+
+ /*
+ We can be sure that currNode, as left child of node previously split,
+ also fullfills the alignment requirement.
+ */
+ }
+
+ // Remove from free list.
+ VMA_ASSERT(currLevel == targetLevel &&
+ currNode != VMA_NULL &&
+ currNode->type == Node::TYPE_FREE);
+ RemoveFromFreeList(currLevel, currNode);
+
+ // Convert to allocation node.
+ currNode->type = Node::TYPE_ALLOCATION;
+ currNode->allocation.alloc = hAllocation;
+
+ ++m_AllocationCount;
+ --m_FreeCount;
+ m_SumFreeSize -= allocSize;
+}
+
+void VmaBlockMetadata_Buddy::DeleteNode(Node* node)
+{
+ if(node->type == Node::TYPE_SPLIT)
+ {
+ DeleteNode(node->split.leftChild->buddy);
+ DeleteNode(node->split.leftChild);
+ }
+
+ vma_delete(GetAllocationCallbacks(), node);
+}
+
+bool VmaBlockMetadata_Buddy::ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const
+{
+ VMA_VALIDATE(level < m_LevelCount);
+ VMA_VALIDATE(curr->parent == parent);
+ VMA_VALIDATE((curr->buddy == VMA_NULL) == (parent == VMA_NULL));
+ VMA_VALIDATE(curr->buddy == VMA_NULL || curr->buddy->buddy == curr);
+ switch(curr->type)
+ {
+ case Node::TYPE_FREE:
+ // curr->free.prev, next are validated separately.
+ ctx.calculatedSumFreeSize += levelNodeSize;
+ ++ctx.calculatedFreeCount;
+ break;
+ case Node::TYPE_ALLOCATION:
+ ++ctx.calculatedAllocationCount;
+ ctx.calculatedSumFreeSize += levelNodeSize - curr->allocation.alloc->GetSize();
+ VMA_VALIDATE(curr->allocation.alloc != VK_NULL_HANDLE);
+ break;
+ case Node::TYPE_SPLIT:
+ {
+ const uint32_t childrenLevel = level + 1;
+ const VkDeviceSize childrenLevelNodeSize = levelNodeSize / 2;
+ const Node* const leftChild = curr->split.leftChild;
+ VMA_VALIDATE(leftChild != VMA_NULL);
+ VMA_VALIDATE(leftChild->offset == curr->offset);
+ if(!ValidateNode(ctx, curr, leftChild, childrenLevel, childrenLevelNodeSize))
+ {
+ VMA_VALIDATE(false && "ValidateNode for left child failed.");
+ }
+ const Node* const rightChild = leftChild->buddy;
+ VMA_VALIDATE(rightChild->offset == curr->offset + childrenLevelNodeSize);
+ if(!ValidateNode(ctx, curr, rightChild, childrenLevel, childrenLevelNodeSize))
+ {
+ VMA_VALIDATE(false && "ValidateNode for right child failed.");
+ }
+ }
+ break;
+ default:
+ return false;
+ }
+
+ return true;
+}
+
+uint32_t VmaBlockMetadata_Buddy::AllocSizeToLevel(VkDeviceSize allocSize) const
+{
+ // I know this could be optimized somehow e.g. by using std::log2p1 from C++20.
+ uint32_t level = 0;
+ VkDeviceSize currLevelNodeSize = m_UsableSize;
+ VkDeviceSize nextLevelNodeSize = currLevelNodeSize >> 1;
+ while(allocSize <= nextLevelNodeSize && level + 1 < m_LevelCount)
+ {
+ ++level;
+ currLevelNodeSize = nextLevelNodeSize;
+ nextLevelNodeSize = currLevelNodeSize >> 1;
+ }
+ return level;
+}
+
+void VmaBlockMetadata_Buddy::FreeAtOffset(VmaAllocation alloc, VkDeviceSize offset)
+{
+ // Find node and level.
+ Node* node = m_Root;
+ VkDeviceSize nodeOffset = 0;
+ uint32_t level = 0;
+ VkDeviceSize levelNodeSize = LevelToNodeSize(0);
+ while(node->type == Node::TYPE_SPLIT)
+ {
+ const VkDeviceSize nextLevelSize = levelNodeSize >> 1;
+ if(offset < nodeOffset + nextLevelSize)
+ {
+ node = node->split.leftChild;
+ }
+ else
+ {
+ node = node->split.leftChild->buddy;
+ nodeOffset += nextLevelSize;
+ }
+ ++level;
+ levelNodeSize = nextLevelSize;
+ }
+
+ VMA_ASSERT(node != VMA_NULL && node->type == Node::TYPE_ALLOCATION);
+ VMA_ASSERT(alloc == VK_NULL_HANDLE || node->allocation.alloc == alloc);
+
+ ++m_FreeCount;
+ --m_AllocationCount;
+ m_SumFreeSize += alloc->GetSize();
+
+ node->type = Node::TYPE_FREE;
+
+ // Join free nodes if possible.
+ while(level > 0 && node->buddy->type == Node::TYPE_FREE)
+ {
+ RemoveFromFreeList(level, node->buddy);
+ Node* const parent = node->parent;
+
+ vma_delete(GetAllocationCallbacks(), node->buddy);
+ vma_delete(GetAllocationCallbacks(), node);
+ parent->type = Node::TYPE_FREE;
+
+ node = parent;
+ --level;
+ //m_SumFreeSize += LevelToNodeSize(level) % 2; // Useful only when level node sizes can be non power of 2.
+ --m_FreeCount;
+ }
+
+ AddToFreeListFront(level, node);
+}
+
+void VmaBlockMetadata_Buddy::CalcAllocationStatInfoNode(VmaStatInfo& outInfo, const Node* node, VkDeviceSize levelNodeSize) const
+{
+ switch(node->type)
+ {
+ case Node::TYPE_FREE:
+ ++outInfo.unusedRangeCount;
+ outInfo.unusedBytes += levelNodeSize;
+ outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, levelNodeSize);
+ outInfo.unusedRangeSizeMin = VMA_MAX(outInfo.unusedRangeSizeMin, levelNodeSize);
+ break;
+ case Node::TYPE_ALLOCATION:
+ {
+ const VkDeviceSize allocSize = node->allocation.alloc->GetSize();
+ ++outInfo.allocationCount;
+ outInfo.usedBytes += allocSize;
+ outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, allocSize);
+ outInfo.allocationSizeMin = VMA_MAX(outInfo.allocationSizeMin, allocSize);
+
+ const VkDeviceSize unusedRangeSize = levelNodeSize - allocSize;
+ if(unusedRangeSize > 0)
+ {
+ ++outInfo.unusedRangeCount;
+ outInfo.unusedBytes += unusedRangeSize;
+ outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, unusedRangeSize);
+ outInfo.unusedRangeSizeMin = VMA_MAX(outInfo.unusedRangeSizeMin, unusedRangeSize);
+ }
+ }
+ break;
+ case Node::TYPE_SPLIT:
+ {
+ const VkDeviceSize childrenNodeSize = levelNodeSize / 2;
+ const Node* const leftChild = node->split.leftChild;
+ CalcAllocationStatInfoNode(outInfo, leftChild, childrenNodeSize);
+ const Node* const rightChild = leftChild->buddy;
+ CalcAllocationStatInfoNode(outInfo, rightChild, childrenNodeSize);
+ }
+ break;
+ default:
+ VMA_ASSERT(0);
+ }
+}
+
+void VmaBlockMetadata_Buddy::AddToFreeListFront(uint32_t level, Node* node)
+{
+ VMA_ASSERT(node->type == Node::TYPE_FREE);
+
+ // List is empty.
+ Node* const frontNode = m_FreeList[level].front;
+ if(frontNode == VMA_NULL)
+ {
+ VMA_ASSERT(m_FreeList[level].back == VMA_NULL);
+ node->free.prev = node->free.next = VMA_NULL;
+ m_FreeList[level].front = m_FreeList[level].back = node;
+ }
+ else
+ {
+ VMA_ASSERT(frontNode->free.prev == VMA_NULL);
+ node->free.prev = VMA_NULL;
+ node->free.next = frontNode;
+ frontNode->free.prev = node;
+ m_FreeList[level].front = node;
+ }
+}
+
+void VmaBlockMetadata_Buddy::RemoveFromFreeList(uint32_t level, Node* node)
+{
+ VMA_ASSERT(m_FreeList[level].front != VMA_NULL);
+
+ // It is at the front.
+ if(node->free.prev == VMA_NULL)
+ {
+ VMA_ASSERT(m_FreeList[level].front == node);
+ m_FreeList[level].front = node->free.next;
+ }
+ else
+ {
+ Node* const prevFreeNode = node->free.prev;
+ VMA_ASSERT(prevFreeNode->free.next == node);
+ prevFreeNode->free.next = node->free.next;
+ }
+
+ // It is at the back.
+ if(node->free.next == VMA_NULL)
+ {
+ VMA_ASSERT(m_FreeList[level].back == node);
+ m_FreeList[level].back = node->free.prev;
+ }
+ else
+ {
+ Node* const nextFreeNode = node->free.next;
+ VMA_ASSERT(nextFreeNode->free.prev == node);
+ nextFreeNode->free.prev = node->free.prev;
+ }
+}
+
+#if VMA_STATS_STRING_ENABLED
+void VmaBlockMetadata_Buddy::PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const
+{
+ switch(node->type)
+ {
+ case Node::TYPE_FREE:
+ PrintDetailedMap_UnusedRange(json, node->offset, levelNodeSize);
+ break;
+ case Node::TYPE_ALLOCATION:
+ {
+ PrintDetailedMap_Allocation(json, node->offset, node->allocation.alloc);
+ const VkDeviceSize allocSize = node->allocation.alloc->GetSize();
+ if(allocSize < levelNodeSize)
+ {
+ PrintDetailedMap_UnusedRange(json, node->offset + allocSize, levelNodeSize - allocSize);
+ }
+ }
+ break;
+ case Node::TYPE_SPLIT:
+ {
+ const VkDeviceSize childrenNodeSize = levelNodeSize / 2;
+ const Node* const leftChild = node->split.leftChild;
+ PrintDetailedMapNode(json, leftChild, childrenNodeSize);
+ const Node* const rightChild = leftChild->buddy;
+ PrintDetailedMapNode(json, rightChild, childrenNodeSize);
+ }
+ break;
+ default:
+ VMA_ASSERT(0);
+ }
+}
+#endif // #if VMA_STATS_STRING_ENABLED
+
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaDeviceMemoryBlock
+
+VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator hAllocator) :
+ m_pMetadata(VMA_NULL),
+ m_MemoryTypeIndex(UINT32_MAX),
+ m_Id(0),
+ m_hMemory(VK_NULL_HANDLE),
+ m_MapCount(0),
+ m_pMappedData(VMA_NULL)
+{
+}
+
+void VmaDeviceMemoryBlock::Init(
+ VmaAllocator hAllocator,
+ VmaPool hParentPool,
+ uint32_t newMemoryTypeIndex,
+ VkDeviceMemory newMemory,
+ VkDeviceSize newSize,
+ uint32_t id,
+ uint32_t algorithm)
+{
+ VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
+
+ m_hParentPool = hParentPool;
+ m_MemoryTypeIndex = newMemoryTypeIndex;
+ m_Id = id;
+ m_hMemory = newMemory;
+
+ switch(algorithm)
+ {
+ case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT:
+ m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Linear)(hAllocator);
+ break;
+ case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT:
+ m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Buddy)(hAllocator);
+ break;
+ default:
+ VMA_ASSERT(0);
+ // Fall-through.
+ case 0:
+ m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Generic)(hAllocator);
+ }
+ m_pMetadata->Init(newSize);
+}
+
+void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator)
+{
+ // This is the most important assert in the entire library.
+ // Hitting it means you have some memory leak - unreleased VmaAllocation objects.
+ VMA_ASSERT(m_pMetadata->IsEmpty() && "Some allocations were not freed before destruction of this memory block!");
+
+ VMA_ASSERT(m_hMemory != VK_NULL_HANDLE);
+ allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_pMetadata->GetSize(), m_hMemory);
+ m_hMemory = VK_NULL_HANDLE;
+
+ vma_delete(allocator, m_pMetadata);
+ m_pMetadata = VMA_NULL;
+}
+
+bool VmaDeviceMemoryBlock::Validate() const
+{
+ VMA_VALIDATE((m_hMemory != VK_NULL_HANDLE) &&
+ (m_pMetadata->GetSize() != 0));
+
+ return m_pMetadata->Validate();
+}
+
+VkResult VmaDeviceMemoryBlock::CheckCorruption(VmaAllocator hAllocator)
+{
+ void* pData = nullptr;
+ VkResult res = Map(hAllocator, 1, &pData);
+ if(res != VK_SUCCESS)
+ {
+ return res;
+ }
+
+ res = m_pMetadata->CheckCorruption(pData);
+
+ Unmap(hAllocator, 1);
+
+ return res;
+}
+
+VkResult VmaDeviceMemoryBlock::Map(VmaAllocator hAllocator, uint32_t count, void** ppData)
+{
+ if(count == 0)
+ {
+ return VK_SUCCESS;
+ }
+
+ VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
+ if(m_MapCount != 0)
+ {
+ m_MapCount += count;
+ VMA_ASSERT(m_pMappedData != VMA_NULL);
+ if(ppData != VMA_NULL)
+ {
+ *ppData = m_pMappedData;
+ }
+ return VK_SUCCESS;
+ }
+ else
+ {
+ VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
+ hAllocator->m_hDevice,
+ m_hMemory,
+ 0, // offset
+ VK_WHOLE_SIZE,
+ 0, // flags
+ &m_pMappedData);
+ if(result == VK_SUCCESS)
+ {
+ if(ppData != VMA_NULL)
+ {
+ *ppData = m_pMappedData;
+ }
+ m_MapCount = count;
+ }
+ return result;
+ }
+}
+
+void VmaDeviceMemoryBlock::Unmap(VmaAllocator hAllocator, uint32_t count)
+{
+ if(count == 0)
+ {
+ return;
+ }
+
+ VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
+ if(m_MapCount >= count)
+ {
+ m_MapCount -= count;
+ if(m_MapCount == 0)
+ {
+ m_pMappedData = VMA_NULL;
+ (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory);
+ }
+ }
+ else
+ {
+ VMA_ASSERT(0 && "VkDeviceMemory block is being unmapped while it was not previously mapped.");
+ }
+}
+
+VkResult VmaDeviceMemoryBlock::WriteMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize)
+{
+ VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION);
+ VMA_ASSERT(allocOffset >= VMA_DEBUG_MARGIN);
+
+ void* pData;
+ VkResult res = Map(hAllocator, 1, &pData);
+ if(res != VK_SUCCESS)
+ {
+ return res;
+ }
+
+ VmaWriteMagicValue(pData, allocOffset - VMA_DEBUG_MARGIN);
+ VmaWriteMagicValue(pData, allocOffset + allocSize);
+
+ Unmap(hAllocator, 1);
+
+ return VK_SUCCESS;
+}
+
+VkResult VmaDeviceMemoryBlock::ValidateMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize)
+{
+ VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION);
+ VMA_ASSERT(allocOffset >= VMA_DEBUG_MARGIN);
+
+ void* pData;
+ VkResult res = Map(hAllocator, 1, &pData);
+ if(res != VK_SUCCESS)
+ {
+ return res;
+ }
+
+ if(!VmaValidateMagicValue(pData, allocOffset - VMA_DEBUG_MARGIN))
+ {
+ VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE FREED ALLOCATION!");
+ }
+ else if(!VmaValidateMagicValue(pData, allocOffset + allocSize))
+ {
+ VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER FREED ALLOCATION!");
+ }
+
+ Unmap(hAllocator, 1);
+
+ return VK_SUCCESS;
+}
+
+VkResult VmaDeviceMemoryBlock::BindBufferMemory(
+ const VmaAllocator hAllocator,
+ const VmaAllocation hAllocation,
+ VkDeviceSize allocationLocalOffset,
+ VkBuffer hBuffer,
+ const void* pNext)
+{
+ VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK &&
+ hAllocation->GetBlock() == this);
+ VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() &&
+ "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?");
+ const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset;
+ // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads.
+ VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
+ return hAllocator->BindVulkanBuffer(m_hMemory, memoryOffset, hBuffer, pNext);
+}
+
+VkResult VmaDeviceMemoryBlock::BindImageMemory(
+ const VmaAllocator hAllocator,
+ const VmaAllocation hAllocation,
+ VkDeviceSize allocationLocalOffset,
+ VkImage hImage,
+ const void* pNext)
+{
+ VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK &&
+ hAllocation->GetBlock() == this);
+ VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() &&
+ "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?");
+ const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset;
+ // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads.
+ VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
+ return hAllocator->BindVulkanImage(m_hMemory, memoryOffset, hImage, pNext);
+}
+
+static void InitStatInfo(VmaStatInfo& outInfo)
+{
+ memset(&outInfo, 0, sizeof(outInfo));
+ outInfo.allocationSizeMin = UINT64_MAX;
+ outInfo.unusedRangeSizeMin = UINT64_MAX;
+}
+
+// Adds statistics srcInfo into inoutInfo, like: inoutInfo += srcInfo.
+static void VmaAddStatInfo(VmaStatInfo& inoutInfo, const VmaStatInfo& srcInfo)
+{
+ inoutInfo.blockCount += srcInfo.blockCount;
+ inoutInfo.allocationCount += srcInfo.allocationCount;
+ inoutInfo.unusedRangeCount += srcInfo.unusedRangeCount;
+ inoutInfo.usedBytes += srcInfo.usedBytes;
+ inoutInfo.unusedBytes += srcInfo.unusedBytes;
+ inoutInfo.allocationSizeMin = VMA_MIN(inoutInfo.allocationSizeMin, srcInfo.allocationSizeMin);
+ inoutInfo.allocationSizeMax = VMA_MAX(inoutInfo.allocationSizeMax, srcInfo.allocationSizeMax);
+ inoutInfo.unusedRangeSizeMin = VMA_MIN(inoutInfo.unusedRangeSizeMin, srcInfo.unusedRangeSizeMin);
+ inoutInfo.unusedRangeSizeMax = VMA_MAX(inoutInfo.unusedRangeSizeMax, srcInfo.unusedRangeSizeMax);
+}
+
+static void VmaPostprocessCalcStatInfo(VmaStatInfo& inoutInfo)
+{
+ inoutInfo.allocationSizeAvg = (inoutInfo.allocationCount > 0) ?
+ VmaRoundDiv<VkDeviceSize>(inoutInfo.usedBytes, inoutInfo.allocationCount) : 0;
+ inoutInfo.unusedRangeSizeAvg = (inoutInfo.unusedRangeCount > 0) ?
+ VmaRoundDiv<VkDeviceSize>(inoutInfo.unusedBytes, inoutInfo.unusedRangeCount) : 0;
+}
+
+VmaPool_T::VmaPool_T(
+ VmaAllocator hAllocator,
+ const VmaPoolCreateInfo& createInfo,
+ VkDeviceSize preferredBlockSize) :
+ m_BlockVector(
+ hAllocator,
+ this, // hParentPool
+ createInfo.memoryTypeIndex,
+ createInfo.blockSize != 0 ? createInfo.blockSize : preferredBlockSize,
+ createInfo.minBlockCount,
+ createInfo.maxBlockCount,
+ (createInfo.flags & VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(),
+ createInfo.frameInUseCount,
+ true, // isCustomPool
+ createInfo.blockSize != 0, // explicitBlockSize
+ createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK), // algorithm
+ m_Id(0)
+{
+}
+
+VmaPool_T::~VmaPool_T()
+{
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+VmaBlockVector::VmaBlockVector(
+ VmaAllocator hAllocator,
+ VmaPool hParentPool,
+ uint32_t memoryTypeIndex,
+ VkDeviceSize preferredBlockSize,
+ size_t minBlockCount,
+ size_t maxBlockCount,
+ VkDeviceSize bufferImageGranularity,
+ uint32_t frameInUseCount,
+ bool isCustomPool,
+ bool explicitBlockSize,
+ uint32_t algorithm) :
+ m_hAllocator(hAllocator),
+ m_hParentPool(hParentPool),
+ m_MemoryTypeIndex(memoryTypeIndex),
+ m_PreferredBlockSize(preferredBlockSize),
+ m_MinBlockCount(minBlockCount),
+ m_MaxBlockCount(maxBlockCount),
+ m_BufferImageGranularity(bufferImageGranularity),
+ m_FrameInUseCount(frameInUseCount),
+ m_IsCustomPool(isCustomPool),
+ m_ExplicitBlockSize(explicitBlockSize),
+ m_Algorithm(algorithm),
+ m_HasEmptyBlock(false),
+ m_Blocks(VmaStlAllocator<VmaDeviceMemoryBlock*>(hAllocator->GetAllocationCallbacks())),
+ m_NextBlockId(0)
+{
+}
+
+VmaBlockVector::~VmaBlockVector()
+{
+ for(size_t i = m_Blocks.size(); i--; )
+ {
+ m_Blocks[i]->Destroy(m_hAllocator);
+ vma_delete(m_hAllocator, m_Blocks[i]);
+ }
+}
+
+VkResult VmaBlockVector::CreateMinBlocks()
+{
+ for(size_t i = 0; i < m_MinBlockCount; ++i)
+ {
+ VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL);
+ if(res != VK_SUCCESS)
+ {
+ return res;
+ }
+ }
+ return VK_SUCCESS;
+}
+
+void VmaBlockVector::GetPoolStats(VmaPoolStats* pStats)
+{
+ VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
+
+ const size_t blockCount = m_Blocks.size();
+
+ pStats->size = 0;
+ pStats->unusedSize = 0;
+ pStats->allocationCount = 0;
+ pStats->unusedRangeCount = 0;
+ pStats->unusedRangeSizeMax = 0;
+ pStats->blockCount = blockCount;
+
+ for(uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
+ {
+ const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
+ VMA_ASSERT(pBlock);
+ VMA_HEAVY_ASSERT(pBlock->Validate());
+ pBlock->m_pMetadata->AddPoolStats(*pStats);
+ }
+}
+
+bool VmaBlockVector::IsCorruptionDetectionEnabled() const
+{
+ const uint32_t requiredMemFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
+ return (VMA_DEBUG_DETECT_CORRUPTION != 0) &&
+ (VMA_DEBUG_MARGIN > 0) &&
+ (m_Algorithm == 0 || m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) &&
+ (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & requiredMemFlags) == requiredMemFlags;
+}
+
+static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32;
+
+VkResult VmaBlockVector::Allocate(
+ uint32_t currentFrameIndex,
+ VkDeviceSize size,
+ VkDeviceSize alignment,
+ const VmaAllocationCreateInfo& createInfo,
+ VmaSuballocationType suballocType,
+ size_t allocationCount,
+ VmaAllocation* pAllocations)
+{
+ size_t allocIndex;
+ VkResult res = VK_SUCCESS;
+
+ if(IsCorruptionDetectionEnabled())
+ {
+ size = VmaAlignUp<VkDeviceSize>(size, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE));
+ alignment = VmaAlignUp<VkDeviceSize>(alignment, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE));
+ }
+
+ {
+ VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
+ for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
+ {
+ res = AllocatePage(
+ currentFrameIndex,
+ size,
+ alignment,
+ createInfo,
+ suballocType,
+ pAllocations + allocIndex);
+ if(res != VK_SUCCESS)
+ {
+ break;
+ }
+ }
+ }
+
+ if(res != VK_SUCCESS)
+ {
+ // Free all already created allocations.
+ while(allocIndex--)
+ {
+ Free(pAllocations[allocIndex]);
+ }
+ memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
+ }
+
+ return res;
+}
+
+VkResult VmaBlockVector::AllocatePage(
+ uint32_t currentFrameIndex,
+ VkDeviceSize size,
+ VkDeviceSize alignment,
+ const VmaAllocationCreateInfo& createInfo,
+ VmaSuballocationType suballocType,
+ VmaAllocation* pAllocation)
+{
+ const bool isUpperAddress = (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0;
+ bool canMakeOtherLost = (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) != 0;
+ const bool mapped = (createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0;
+ const bool isUserDataString = (createInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0;
+ const bool canCreateNewBlock =
+ ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) &&
+ (m_Blocks.size() < m_MaxBlockCount);
+ uint32_t strategy = createInfo.flags & VMA_ALLOCATION_CREATE_STRATEGY_MASK;
+
+ // If linearAlgorithm is used, canMakeOtherLost is available only when used as ring buffer.
+ // Which in turn is available only when maxBlockCount = 1.
+ if(m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT && m_MaxBlockCount > 1)
+ {
+ canMakeOtherLost = false;
+ }
+
+ // Upper address can only be used with linear allocator and within single memory block.
+ if(isUpperAddress &&
+ (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT || m_MaxBlockCount > 1))
+ {
+ return VK_ERROR_FEATURE_NOT_PRESENT;
+ }
+
+ // Validate strategy.
+ switch(strategy)
+ {
+ case 0:
+ strategy = VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT;
+ break;
+ case VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT:
+ case VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT:
+ case VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT:
+ break;
+ default:
+ return VK_ERROR_FEATURE_NOT_PRESENT;
+ }
+
+ // Early reject: requested allocation size is larger that maximum block size for this block vector.
+ if(size + 2 * VMA_DEBUG_MARGIN > m_PreferredBlockSize)
+ {
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ }
+
+ /*
+ Under certain condition, this whole section can be skipped for optimization, so
+ we move on directly to trying to allocate with canMakeOtherLost. That's the case
+ e.g. for custom pools with linear algorithm.
+ */
+ if(!canMakeOtherLost || canCreateNewBlock)
+ {
+ // 1. Search existing allocations. Try to allocate without making other allocations lost.
+ VmaAllocationCreateFlags allocFlagsCopy = createInfo.flags;
+ allocFlagsCopy &= ~VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT;
+
+ if(m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT)
+ {
+ // Use only last block.
+ if(!m_Blocks.empty())
+ {
+ VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks.back();
+ VMA_ASSERT(pCurrBlock);
+ VkResult res = AllocateFromBlock(
+ pCurrBlock,
+ currentFrameIndex,
+ size,
+ alignment,
+ allocFlagsCopy,
+ createInfo.pUserData,
+ suballocType,
+ strategy,
+ pAllocation);
+ if(res == VK_SUCCESS)
+ {
+ VMA_DEBUG_LOG(" Returned from last block #%u", (uint32_t)(m_Blocks.size() - 1));
+ return VK_SUCCESS;
+ }
+ }
+ }
+ else
+ {
+ if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT)
+ {
+ // Forward order in m_Blocks - prefer blocks with smallest amount of free space.
+ for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex )
+ {
+ VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
+ VMA_ASSERT(pCurrBlock);
+ VkResult res = AllocateFromBlock(
+ pCurrBlock,
+ currentFrameIndex,
+ size,
+ alignment,
+ allocFlagsCopy,
+ createInfo.pUserData,
+ suballocType,
+ strategy,
+ pAllocation);
+ if(res == VK_SUCCESS)
+ {
+ VMA_DEBUG_LOG(" Returned from existing block #%u", (uint32_t)blockIndex);
+ return VK_SUCCESS;
+ }
+ }
+ }
+ else // WORST_FIT, FIRST_FIT
+ {
+ // Backward order in m_Blocks - prefer blocks with largest amount of free space.
+ for(size_t blockIndex = m_Blocks.size(); blockIndex--; )
+ {
+ VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
+ VMA_ASSERT(pCurrBlock);
+ VkResult res = AllocateFromBlock(
+ pCurrBlock,
+ currentFrameIndex,
+ size,
+ alignment,
+ allocFlagsCopy,
+ createInfo.pUserData,
+ suballocType,
+ strategy,
+ pAllocation);
+ if(res == VK_SUCCESS)
+ {
+ VMA_DEBUG_LOG(" Returned from existing block #%u", (uint32_t)blockIndex);
+ return VK_SUCCESS;
+ }
+ }
+ }
+ }
+
+ // 2. Try to create new block.
+ if(canCreateNewBlock)
+ {
+ // Calculate optimal size for new block.
+ VkDeviceSize newBlockSize = m_PreferredBlockSize;
+ uint32_t newBlockSizeShift = 0;
+ const uint32_t NEW_BLOCK_SIZE_SHIFT_MAX = 3;
+
+ if(!m_ExplicitBlockSize)
+ {
+ // Allocate 1/8, 1/4, 1/2 as first blocks.
+ const VkDeviceSize maxExistingBlockSize = CalcMaxBlockSize();
+ for(uint32_t i = 0; i < NEW_BLOCK_SIZE_SHIFT_MAX; ++i)
+ {
+ const VkDeviceSize smallerNewBlockSize = newBlockSize / 2;
+ if(smallerNewBlockSize > maxExistingBlockSize && smallerNewBlockSize >= size * 2)
+ {
+ newBlockSize = smallerNewBlockSize;
+ ++newBlockSizeShift;
+ }
+ else
+ {
+ break;
+ }
+ }
+ }
+
+ size_t newBlockIndex = 0;
+ VkResult res = CreateBlock(newBlockSize, &newBlockIndex);
+ // Allocation of this size failed? Try 1/2, 1/4, 1/8 of m_PreferredBlockSize.
+ if(!m_ExplicitBlockSize)
+ {
+ while(res < 0 && newBlockSizeShift < NEW_BLOCK_SIZE_SHIFT_MAX)
+ {
+ const VkDeviceSize smallerNewBlockSize = newBlockSize / 2;
+ if(smallerNewBlockSize >= size)
+ {
+ newBlockSize = smallerNewBlockSize;
+ ++newBlockSizeShift;
+ res = CreateBlock(newBlockSize, &newBlockIndex);
+ }
+ else
+ {
+ break;
+ }
+ }
+ }
+
+ if(res == VK_SUCCESS)
+ {
+ VmaDeviceMemoryBlock* const pBlock = m_Blocks[newBlockIndex];
+ VMA_ASSERT(pBlock->m_pMetadata->GetSize() >= size);
+
+ res = AllocateFromBlock(
+ pBlock,
+ currentFrameIndex,
+ size,
+ alignment,
+ allocFlagsCopy,
+ createInfo.pUserData,
+ suballocType,
+ strategy,
+ pAllocation);
+ if(res == VK_SUCCESS)
+ {
+ VMA_DEBUG_LOG(" Created new block Size=%llu", newBlockSize);
+ return VK_SUCCESS;
+ }
+ else
+ {
+ // Allocation from new block failed, possibly due to VMA_DEBUG_MARGIN or alignment.
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ }
+ }
+ }
+ }
+
+ // 3. Try to allocate from existing blocks with making other allocations lost.
+ if(canMakeOtherLost)
+ {
+ uint32_t tryIndex = 0;
+ for(; tryIndex < VMA_ALLOCATION_TRY_COUNT; ++tryIndex)
+ {
+ VmaDeviceMemoryBlock* pBestRequestBlock = VMA_NULL;
+ VmaAllocationRequest bestRequest = {};
+ VkDeviceSize bestRequestCost = VK_WHOLE_SIZE;
+
+ // 1. Search existing allocations.
+ if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT)
+ {
+ // Forward order in m_Blocks - prefer blocks with smallest amount of free space.
+ for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex )
+ {
+ VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
+ VMA_ASSERT(pCurrBlock);
+ VmaAllocationRequest currRequest = {};
+ if(pCurrBlock->m_pMetadata->CreateAllocationRequest(
+ currentFrameIndex,
+ m_FrameInUseCount,
+ m_BufferImageGranularity,
+ size,
+ alignment,
+ (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0,
+ suballocType,
+ canMakeOtherLost,
+ strategy,
+ &currRequest))
+ {
+ const VkDeviceSize currRequestCost = currRequest.CalcCost();
+ if(pBestRequestBlock == VMA_NULL ||
+ currRequestCost < bestRequestCost)
+ {
+ pBestRequestBlock = pCurrBlock;
+ bestRequest = currRequest;
+ bestRequestCost = currRequestCost;
+
+ if(bestRequestCost == 0)
+ {
+ break;
+ }
+ }
+ }
+ }
+ }
+ else // WORST_FIT, FIRST_FIT
+ {
+ // Backward order in m_Blocks - prefer blocks with largest amount of free space.
+ for(size_t blockIndex = m_Blocks.size(); blockIndex--; )
+ {
+ VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
+ VMA_ASSERT(pCurrBlock);
+ VmaAllocationRequest currRequest = {};
+ if(pCurrBlock->m_pMetadata->CreateAllocationRequest(
+ currentFrameIndex,
+ m_FrameInUseCount,
+ m_BufferImageGranularity,
+ size,
+ alignment,
+ (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0,
+ suballocType,
+ canMakeOtherLost,
+ strategy,
+ &currRequest))
+ {
+ const VkDeviceSize currRequestCost = currRequest.CalcCost();
+ if(pBestRequestBlock == VMA_NULL ||
+ currRequestCost < bestRequestCost ||
+ strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT)
+ {
+ pBestRequestBlock = pCurrBlock;
+ bestRequest = currRequest;
+ bestRequestCost = currRequestCost;
+
+ if(bestRequestCost == 0 ||
+ strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT)
+ {
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ if(pBestRequestBlock != VMA_NULL)
+ {
+ if(mapped)
+ {
+ VkResult res = pBestRequestBlock->Map(m_hAllocator, 1, VMA_NULL);
+ if(res != VK_SUCCESS)
+ {
+ return res;
+ }
+ }
+
+ if(pBestRequestBlock->m_pMetadata->MakeRequestedAllocationsLost(
+ currentFrameIndex,
+ m_FrameInUseCount,
+ &bestRequest))
+ {
+ // We no longer have an empty Allocation.
+ if(pBestRequestBlock->m_pMetadata->IsEmpty())
+ {
+ m_HasEmptyBlock = false;
+ }
+ // Allocate from this pBlock.
+ *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate();
+ (*pAllocation)->Ctor(currentFrameIndex, isUserDataString);
+ pBestRequestBlock->m_pMetadata->Alloc(bestRequest, suballocType, size, *pAllocation);
+ (*pAllocation)->InitBlockAllocation(
+ pBestRequestBlock,
+ bestRequest.offset,
+ alignment,
+ size,
+ suballocType,
+ mapped,
+ (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);
+ VMA_HEAVY_ASSERT(pBestRequestBlock->Validate());
+ VMA_DEBUG_LOG(" Returned from existing block");
+ (*pAllocation)->SetUserData(m_hAllocator, createInfo.pUserData);
+ if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
+ {
+ m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
+ }
+ if(IsCorruptionDetectionEnabled())
+ {
+ VkResult res = pBestRequestBlock->WriteMagicValueAroundAllocation(m_hAllocator, bestRequest.offset, size);
+ VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value.");
+ }
+ return VK_SUCCESS;
+ }
+ // else: Some allocations must have been touched while we are here. Next try.
+ }
+ else
+ {
+ // Could not find place in any of the blocks - break outer loop.
+ break;
+ }
+ }
+ /* Maximum number of tries exceeded - a very unlike event when many other
+ threads are simultaneously touching allocations making it impossible to make
+ lost at the same time as we try to allocate. */
+ if(tryIndex == VMA_ALLOCATION_TRY_COUNT)
+ {
+ return VK_ERROR_TOO_MANY_OBJECTS;
+ }
+ }
+
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+}
+
+void VmaBlockVector::Free(
+ VmaAllocation hAllocation)
+{
+ VmaDeviceMemoryBlock* pBlockToDelete = VMA_NULL;
+
+ // Scope for lock.
+ {
+ VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
+
+ VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();
+
+ if(IsCorruptionDetectionEnabled())
+ {
+ VkResult res = pBlock->ValidateMagicValueAroundAllocation(m_hAllocator, hAllocation->GetOffset(), hAllocation->GetSize());
+ VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to validate magic value.");
+ }
+
+ if(hAllocation->IsPersistentMap())
+ {
+ pBlock->Unmap(m_hAllocator, 1);
+ }
+
+ pBlock->m_pMetadata->Free(hAllocation);
+ VMA_HEAVY_ASSERT(pBlock->Validate());
+
+ VMA_DEBUG_LOG(" Freed from MemoryTypeIndex=%u", m_MemoryTypeIndex);
+
+ // pBlock became empty after this deallocation.
+ if(pBlock->m_pMetadata->IsEmpty())
+ {
+ // Already has empty Allocation. We don't want to have two, so delete this one.
+ if(m_HasEmptyBlock && m_Blocks.size() > m_MinBlockCount)
+ {
+ pBlockToDelete = pBlock;
+ Remove(pBlock);
+ }
+ // We now have first empty block.
+ else
+ {
+ m_HasEmptyBlock = true;
+ }
+ }
+ // pBlock didn't become empty, but we have another empty block - find and free that one.
+ // (This is optional, heuristics.)
+ else if(m_HasEmptyBlock)
+ {
+ VmaDeviceMemoryBlock* pLastBlock = m_Blocks.back();
+ if(pLastBlock->m_pMetadata->IsEmpty() && m_Blocks.size() > m_MinBlockCount)
+ {
+ pBlockToDelete = pLastBlock;
+ m_Blocks.pop_back();
+ m_HasEmptyBlock = false;
+ }
+ }
+
+ IncrementallySortBlocks();
+ }
+
+ // Destruction of a free Allocation. Deferred until this point, outside of mutex
+ // lock, for performance reason.
+ if(pBlockToDelete != VMA_NULL)
+ {
+ VMA_DEBUG_LOG(" Deleted empty allocation");
+ pBlockToDelete->Destroy(m_hAllocator);
+ vma_delete(m_hAllocator, pBlockToDelete);
+ }
+}
+
+VkDeviceSize VmaBlockVector::CalcMaxBlockSize() const
+{
+ VkDeviceSize result = 0;
+ for(size_t i = m_Blocks.size(); i--; )
+ {
+ result = VMA_MAX(result, m_Blocks[i]->m_pMetadata->GetSize());
+ if(result >= m_PreferredBlockSize)
+ {
+ break;
+ }
+ }
+ return result;
+}
+
+void VmaBlockVector::Remove(VmaDeviceMemoryBlock* pBlock)
+{
+ for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
+ {
+ if(m_Blocks[blockIndex] == pBlock)
+ {
+ VmaVectorRemove(m_Blocks, blockIndex);
+ return;
+ }
+ }
+ VMA_ASSERT(0);
+}
+
+void VmaBlockVector::IncrementallySortBlocks()
+{
+ if(m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT)
+ {
+ // Bubble sort only until first swap.
+ for(size_t i = 1; i < m_Blocks.size(); ++i)
+ {
+ if(m_Blocks[i - 1]->m_pMetadata->GetSumFreeSize() > m_Blocks[i]->m_pMetadata->GetSumFreeSize())
+ {
+ VMA_SWAP(m_Blocks[i - 1], m_Blocks[i]);
+ return;
+ }
+ }
+ }
+}
+
+VkResult VmaBlockVector::AllocateFromBlock(
+ VmaDeviceMemoryBlock* pBlock,
+ uint32_t currentFrameIndex,
+ VkDeviceSize size,
+ VkDeviceSize alignment,
+ VmaAllocationCreateFlags allocFlags,
+ void* pUserData,
+ VmaSuballocationType suballocType,
+ uint32_t strategy,
+ VmaAllocation* pAllocation)
+{
+ VMA_ASSERT((allocFlags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) == 0);
+ const bool isUpperAddress = (allocFlags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0;
+ const bool mapped = (allocFlags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0;
+ const bool isUserDataString = (allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0;
+
+ VmaAllocationRequest currRequest = {};
+ if(pBlock->m_pMetadata->CreateAllocationRequest(
+ currentFrameIndex,
+ m_FrameInUseCount,
+ m_BufferImageGranularity,
+ size,
+ alignment,
+ isUpperAddress,
+ suballocType,
+ false, // canMakeOtherLost
+ strategy,
+ &currRequest))
+ {
+ // Allocate from pCurrBlock.
+ VMA_ASSERT(currRequest.itemsToMakeLostCount == 0);
+
+ if(mapped)
+ {
+ VkResult res = pBlock->Map(m_hAllocator, 1, VMA_NULL);
+ if(res != VK_SUCCESS)
+ {
+ return res;
+ }
+ }
+
+ // We no longer have an empty Allocation.
+ if(pBlock->m_pMetadata->IsEmpty())
+ {
+ m_HasEmptyBlock = false;
+ }
+
+ *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate();
+ (*pAllocation)->Ctor(currentFrameIndex, isUserDataString);
+ pBlock->m_pMetadata->Alloc(currRequest, suballocType, size, *pAllocation);
+ (*pAllocation)->InitBlockAllocation(
+ pBlock,
+ currRequest.offset,
+ alignment,
+ size,
+ suballocType,
+ mapped,
+ (allocFlags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);
+ VMA_HEAVY_ASSERT(pBlock->Validate());
+ (*pAllocation)->SetUserData(m_hAllocator, pUserData);
+ if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
+ {
+ m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
+ }
+ if(IsCorruptionDetectionEnabled())
+ {
+ VkResult res = pBlock->WriteMagicValueAroundAllocation(m_hAllocator, currRequest.offset, size);
+ VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value.");
+ }
+ return VK_SUCCESS;
+ }
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+}
+
+VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex)
+{
+ VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
+ allocInfo.memoryTypeIndex = m_MemoryTypeIndex;
+ allocInfo.allocationSize = blockSize;
+ VkDeviceMemory mem = VK_NULL_HANDLE;
+ VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem);
+ if(res < 0)
+ {
+ return res;
+ }
+
+ // New VkDeviceMemory successfully created.
+
+ // Create new Allocation for it.
+ VmaDeviceMemoryBlock* const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator);
+ pBlock->Init(
+ m_hAllocator,
+ m_hParentPool,
+ m_MemoryTypeIndex,
+ mem,
+ allocInfo.allocationSize,
+ m_NextBlockId++,
+ m_Algorithm);
+
+ m_Blocks.push_back(pBlock);
+ if(pNewBlockIndex != VMA_NULL)
+ {
+ *pNewBlockIndex = m_Blocks.size() - 1;
+ }
+
+ return VK_SUCCESS;
+}
+
+void VmaBlockVector::ApplyDefragmentationMovesCpu(
+ class VmaBlockVectorDefragmentationContext* pDefragCtx,
+ const VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves)
+{
+ const size_t blockCount = m_Blocks.size();
+ const bool isNonCoherent = m_hAllocator->IsMemoryTypeNonCoherent(m_MemoryTypeIndex);
+
+ enum BLOCK_FLAG
+ {
+ BLOCK_FLAG_USED = 0x00000001,
+ BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION = 0x00000002,
+ };
+
+ struct BlockInfo
+ {
+ uint32_t flags;
+ void* pMappedData;
+ };
+ VmaVector< BlockInfo, VmaStlAllocator<BlockInfo> >
+ blockInfo(blockCount, BlockInfo(), VmaStlAllocator<BlockInfo>(m_hAllocator->GetAllocationCallbacks()));
+ memset(blockInfo.data(), 0, blockCount * sizeof(BlockInfo));
+
+ // Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED.
+ const size_t moveCount = moves.size();
+ for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex)
+ {
+ const VmaDefragmentationMove& move = moves[moveIndex];
+ blockInfo[move.srcBlockIndex].flags |= BLOCK_FLAG_USED;
+ blockInfo[move.dstBlockIndex].flags |= BLOCK_FLAG_USED;
+ }
+
+ VMA_ASSERT(pDefragCtx->res == VK_SUCCESS);
+
+ // Go over all blocks. Get mapped pointer or map if necessary.
+ for(size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex)
+ {
+ BlockInfo& currBlockInfo = blockInfo[blockIndex];
+ VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];
+ if((currBlockInfo.flags & BLOCK_FLAG_USED) != 0)
+ {
+ currBlockInfo.pMappedData = pBlock->GetMappedData();
+ // It is not originally mapped - map it.
+ if(currBlockInfo.pMappedData == VMA_NULL)
+ {
+ pDefragCtx->res = pBlock->Map(m_hAllocator, 1, &currBlockInfo.pMappedData);
+ if(pDefragCtx->res == VK_SUCCESS)
+ {
+ currBlockInfo.flags |= BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION;
+ }
+ }
+ }
+ }
+
+ // Go over all moves. Do actual data transfer.
+ if(pDefragCtx->res == VK_SUCCESS)
+ {
+ const VkDeviceSize nonCoherentAtomSize = m_hAllocator->m_PhysicalDeviceProperties.limits.nonCoherentAtomSize;
+ VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE };
+
+ for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex)
+ {
+ const VmaDefragmentationMove& move = moves[moveIndex];
+
+ const BlockInfo& srcBlockInfo = blockInfo[move.srcBlockIndex];
+ const BlockInfo& dstBlockInfo = blockInfo[move.dstBlockIndex];
+
+ VMA_ASSERT(srcBlockInfo.pMappedData && dstBlockInfo.pMappedData);
+
+ // Invalidate source.
+ if(isNonCoherent)
+ {
+ VmaDeviceMemoryBlock* const pSrcBlock = m_Blocks[move.srcBlockIndex];
+ memRange.memory = pSrcBlock->GetDeviceMemory();
+ memRange.offset = VmaAlignDown(move.srcOffset, nonCoherentAtomSize);
+ memRange.size = VMA_MIN(
+ VmaAlignUp(move.size + (move.srcOffset - memRange.offset), nonCoherentAtomSize),
+ pSrcBlock->m_pMetadata->GetSize() - memRange.offset);
+ (*m_hAllocator->GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange);
+ }
+
+ // THE PLACE WHERE ACTUAL DATA COPY HAPPENS.
+ memmove(
+ reinterpret_cast<char*>(dstBlockInfo.pMappedData) + move.dstOffset,
+ reinterpret_cast<char*>(srcBlockInfo.pMappedData) + move.srcOffset,
+ static_cast<size_t>(move.size));
+
+ if(IsCorruptionDetectionEnabled())
+ {
+ VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset - VMA_DEBUG_MARGIN);
+ VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset + move.size);
+ }
+
+ // Flush destination.
+ if(isNonCoherent)
+ {
+ VmaDeviceMemoryBlock* const pDstBlock = m_Blocks[move.dstBlockIndex];
+ memRange.memory = pDstBlock->GetDeviceMemory();
+ memRange.offset = VmaAlignDown(move.dstOffset, nonCoherentAtomSize);
+ memRange.size = VMA_MIN(
+ VmaAlignUp(move.size + (move.dstOffset - memRange.offset), nonCoherentAtomSize),
+ pDstBlock->m_pMetadata->GetSize() - memRange.offset);
+ (*m_hAllocator->GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange);
+ }
+ }
+ }
+
+ // Go over all blocks in reverse order. Unmap those that were mapped just for defragmentation.
+ // Regardless of pCtx->res == VK_SUCCESS.
+ for(size_t blockIndex = blockCount; blockIndex--; )
+ {
+ const BlockInfo& currBlockInfo = blockInfo[blockIndex];
+ if((currBlockInfo.flags & BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION) != 0)
+ {
+ VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];
+ pBlock->Unmap(m_hAllocator, 1);
+ }
+ }
+}
+
+void VmaBlockVector::ApplyDefragmentationMovesGpu(
+ class VmaBlockVectorDefragmentationContext* pDefragCtx,
+ const VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
+ VkCommandBuffer commandBuffer)
+{
+ const size_t blockCount = m_Blocks.size();
+
+ pDefragCtx->blockContexts.resize(blockCount);
+ memset(pDefragCtx->blockContexts.data(), 0, blockCount * sizeof(VmaBlockDefragmentationContext));
+
+ // Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED.
+ const size_t moveCount = moves.size();
+ for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex)
+ {
+ const VmaDefragmentationMove& move = moves[moveIndex];
+ pDefragCtx->blockContexts[move.srcBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED;
+ pDefragCtx->blockContexts[move.dstBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED;
+ }
+
+ VMA_ASSERT(pDefragCtx->res == VK_SUCCESS);
+
+ // Go over all blocks. Create and bind buffer for whole block if necessary.
+ {
+ VkBufferCreateInfo bufCreateInfo;
+ VmaFillGpuDefragmentationBufferCreateInfo(bufCreateInfo);
+
+ for(size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex)
+ {
+ VmaBlockDefragmentationContext& currBlockCtx = pDefragCtx->blockContexts[blockIndex];
+ VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];
+ if((currBlockCtx.flags & VmaBlockDefragmentationContext::BLOCK_FLAG_USED) != 0)
+ {
+ bufCreateInfo.size = pBlock->m_pMetadata->GetSize();
+ pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkCreateBuffer)(
+ m_hAllocator->m_hDevice, &bufCreateInfo, m_hAllocator->GetAllocationCallbacks(), &currBlockCtx.hBuffer);
+ if(pDefragCtx->res == VK_SUCCESS)
+ {
+ pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkBindBufferMemory)(
+ m_hAllocator->m_hDevice, currBlockCtx.hBuffer, pBlock->GetDeviceMemory(), 0);
+ }
+ }
+ }
+ }
+
+ // Go over all moves. Post data transfer commands to command buffer.
+ if(pDefragCtx->res == VK_SUCCESS)
+ {
+ for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex)
+ {
+ const VmaDefragmentationMove& move = moves[moveIndex];
+
+ const VmaBlockDefragmentationContext& srcBlockCtx = pDefragCtx->blockContexts[move.srcBlockIndex];
+ const VmaBlockDefragmentationContext& dstBlockCtx = pDefragCtx->blockContexts[move.dstBlockIndex];
+
+ VMA_ASSERT(srcBlockCtx.hBuffer && dstBlockCtx.hBuffer);
+
+ VkBufferCopy region = {
+ move.srcOffset,
+ move.dstOffset,
+ move.size };
+ (*m_hAllocator->GetVulkanFunctions().vkCmdCopyBuffer)(
+ commandBuffer, srcBlockCtx.hBuffer, dstBlockCtx.hBuffer, 1, ®ion);
+ }
+ }
+
+ // Save buffers to defrag context for later destruction.
+ if(pDefragCtx->res == VK_SUCCESS && moveCount > 0)
+ {
+ pDefragCtx->res = VK_NOT_READY;
+ }
+}
+
+void VmaBlockVector::FreeEmptyBlocks(VmaDefragmentationStats* pDefragmentationStats)
+{
+ m_HasEmptyBlock = false;
+ for(size_t blockIndex = m_Blocks.size(); blockIndex--; )
+ {
+ VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];
+ if(pBlock->m_pMetadata->IsEmpty())
+ {
+ if(m_Blocks.size() > m_MinBlockCount)
+ {
+ if(pDefragmentationStats != VMA_NULL)
+ {
+ ++pDefragmentationStats->deviceMemoryBlocksFreed;
+ pDefragmentationStats->bytesFreed += pBlock->m_pMetadata->GetSize();
+ }
+
+ VmaVectorRemove(m_Blocks, blockIndex);
+ pBlock->Destroy(m_hAllocator);
+ vma_delete(m_hAllocator, pBlock);
+ }
+ else
+ {
+ m_HasEmptyBlock = true;
+ }
+ }
+ }
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter& json)
+{
+ VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
+
+ json.BeginObject();
+
+ if(m_IsCustomPool)
+ {
+ json.WriteString("MemoryTypeIndex");
+ json.WriteNumber(m_MemoryTypeIndex);
+
+ json.WriteString("BlockSize");
+ json.WriteNumber(m_PreferredBlockSize);
+
+ json.WriteString("BlockCount");
+ json.BeginObject(true);
+ if(m_MinBlockCount > 0)
+ {
+ json.WriteString("Min");
+ json.WriteNumber((uint64_t)m_MinBlockCount);
+ }
+ if(m_MaxBlockCount < SIZE_MAX)
+ {
+ json.WriteString("Max");
+ json.WriteNumber((uint64_t)m_MaxBlockCount);
+ }
+ json.WriteString("Cur");
+ json.WriteNumber((uint64_t)m_Blocks.size());
+ json.EndObject();
+
+ if(m_FrameInUseCount > 0)
+ {
+ json.WriteString("FrameInUseCount");
+ json.WriteNumber(m_FrameInUseCount);
+ }
+
+ if(m_Algorithm != 0)
+ {
+ json.WriteString("Algorithm");
+ json.WriteString(VmaAlgorithmToStr(m_Algorithm));
+ }
+ }
+ else
+ {
+ json.WriteString("PreferredBlockSize");
+ json.WriteNumber(m_PreferredBlockSize);
+ }
+
+ json.WriteString("Blocks");
+ json.BeginObject();
+ for(size_t i = 0; i < m_Blocks.size(); ++i)
+ {
+ json.BeginString();
+ json.ContinueString(m_Blocks[i]->GetId());
+ json.EndString();
+
+ m_Blocks[i]->m_pMetadata->PrintDetailedMap(json);
+ }
+ json.EndObject();
+
+ json.EndObject();
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+void VmaBlockVector::Defragment(
+ class VmaBlockVectorDefragmentationContext* pCtx,
+ VmaDefragmentationStats* pStats,
+ VkDeviceSize& maxCpuBytesToMove, uint32_t& maxCpuAllocationsToMove,
+ VkDeviceSize& maxGpuBytesToMove, uint32_t& maxGpuAllocationsToMove,
+ VkCommandBuffer commandBuffer)
+{
+ pCtx->res = VK_SUCCESS;
+
+ const VkMemoryPropertyFlags memPropFlags =
+ m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags;
+ const bool isHostVisible = (memPropFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0;
+
+ const bool canDefragmentOnCpu = maxCpuBytesToMove > 0 && maxCpuAllocationsToMove > 0 &&
+ isHostVisible;
+ const bool canDefragmentOnGpu = maxGpuBytesToMove > 0 && maxGpuAllocationsToMove > 0 &&
+ !IsCorruptionDetectionEnabled() &&
+ ((1u << m_MemoryTypeIndex) & m_hAllocator->GetGpuDefragmentationMemoryTypeBits()) != 0;
+
+ // There are options to defragment this memory type.
+ if(canDefragmentOnCpu || canDefragmentOnGpu)
+ {
+ bool defragmentOnGpu;
+ // There is only one option to defragment this memory type.
+ if(canDefragmentOnGpu != canDefragmentOnCpu)
+ {
+ defragmentOnGpu = canDefragmentOnGpu;
+ }
+ // Both options are available: Heuristics to choose the best one.
+ else
+ {
+ defragmentOnGpu = (memPropFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0 ||
+ m_hAllocator->IsIntegratedGpu();
+ }
+
+ bool overlappingMoveSupported = !defragmentOnGpu;
+
+ if(m_hAllocator->m_UseMutex)
+ {
+ m_Mutex.LockWrite();
+ pCtx->mutexLocked = true;
+ }
+
+ pCtx->Begin(overlappingMoveSupported);
+
+ // Defragment.
+
+ const VkDeviceSize maxBytesToMove = defragmentOnGpu ? maxGpuBytesToMove : maxCpuBytesToMove;
+ const uint32_t maxAllocationsToMove = defragmentOnGpu ? maxGpuAllocationsToMove : maxCpuAllocationsToMove;
+ VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > moves =
+ VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >(VmaStlAllocator<VmaDefragmentationMove>(m_hAllocator->GetAllocationCallbacks()));
+ pCtx->res = pCtx->GetAlgorithm()->Defragment(moves, maxBytesToMove, maxAllocationsToMove);
+
+ // Accumulate statistics.
+ if(pStats != VMA_NULL)
+ {
+ const VkDeviceSize bytesMoved = pCtx->GetAlgorithm()->GetBytesMoved();
+ const uint32_t allocationsMoved = pCtx->GetAlgorithm()->GetAllocationsMoved();
+ pStats->bytesMoved += bytesMoved;
+ pStats->allocationsMoved += allocationsMoved;
+ VMA_ASSERT(bytesMoved <= maxBytesToMove);
+ VMA_ASSERT(allocationsMoved <= maxAllocationsToMove);
+ if(defragmentOnGpu)
+ {
+ maxGpuBytesToMove -= bytesMoved;
+ maxGpuAllocationsToMove -= allocationsMoved;
+ }
+ else
+ {
+ maxCpuBytesToMove -= bytesMoved;
+ maxCpuAllocationsToMove -= allocationsMoved;
+ }
+ }
+
+ if(pCtx->res >= VK_SUCCESS)
+ {
+ if(defragmentOnGpu)
+ {
+ ApplyDefragmentationMovesGpu(pCtx, moves, commandBuffer);
+ }
+ else
+ {
+ ApplyDefragmentationMovesCpu(pCtx, moves);
+ }
+ }
+ }
+}
+
+void VmaBlockVector::DefragmentationEnd(
+ class VmaBlockVectorDefragmentationContext* pCtx,
+ VmaDefragmentationStats* pStats)
+{
+ // Destroy buffers.
+ for(size_t blockIndex = pCtx->blockContexts.size(); blockIndex--; )
+ {
+ VmaBlockDefragmentationContext& blockCtx = pCtx->blockContexts[blockIndex];
+ if(blockCtx.hBuffer)
+ {
+ (*m_hAllocator->GetVulkanFunctions().vkDestroyBuffer)(
+ m_hAllocator->m_hDevice, blockCtx.hBuffer, m_hAllocator->GetAllocationCallbacks());
+ }
+ }
+
+ if(pCtx->res >= VK_SUCCESS)
+ {
+ FreeEmptyBlocks(pStats);
+ }
+
+ if(pCtx->mutexLocked)
+ {
+ VMA_ASSERT(m_hAllocator->m_UseMutex);
+ m_Mutex.UnlockWrite();
+ }
+}
+
+size_t VmaBlockVector::CalcAllocationCount() const
+{
+ size_t result = 0;
+ for(size_t i = 0; i < m_Blocks.size(); ++i)
+ {
+ result += m_Blocks[i]->m_pMetadata->GetAllocationCount();
+ }
+ return result;
+}
+
+bool VmaBlockVector::IsBufferImageGranularityConflictPossible() const
+{
+ if(m_BufferImageGranularity == 1)
+ {
+ return false;
+ }
+ VmaSuballocationType lastSuballocType = VMA_SUBALLOCATION_TYPE_FREE;
+ for(size_t i = 0, count = m_Blocks.size(); i < count; ++i)
+ {
+ VmaDeviceMemoryBlock* const pBlock = m_Blocks[i];
+ VMA_ASSERT(m_Algorithm == 0);
+ VmaBlockMetadata_Generic* const pMetadata = (VmaBlockMetadata_Generic*)pBlock->m_pMetadata;
+ if(pMetadata->IsBufferImageGranularityConflictPossible(m_BufferImageGranularity, lastSuballocType))
+ {
+ return true;
+ }
+ }
+ return false;
+}
+
+void VmaBlockVector::MakePoolAllocationsLost(
+ uint32_t currentFrameIndex,
+ size_t* pLostAllocationCount)
+{
+ VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
+ size_t lostAllocationCount = 0;
+ for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
+ {
+ VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
+ VMA_ASSERT(pBlock);
+ lostAllocationCount += pBlock->m_pMetadata->MakeAllocationsLost(currentFrameIndex, m_FrameInUseCount);
+ }
+ if(pLostAllocationCount != VMA_NULL)
+ {
+ *pLostAllocationCount = lostAllocationCount;
+ }
+}
+
+VkResult VmaBlockVector::CheckCorruption()
+{
+ if(!IsCorruptionDetectionEnabled())
+ {
+ return VK_ERROR_FEATURE_NOT_PRESENT;
+ }
+
+ VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
+ for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
+ {
+ VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
+ VMA_ASSERT(pBlock);
+ VkResult res = pBlock->CheckCorruption(m_hAllocator);
+ if(res != VK_SUCCESS)
+ {
+ return res;
+ }
+ }
+ return VK_SUCCESS;
+}
+
+void VmaBlockVector::AddStats(VmaStats* pStats)
+{
+ const uint32_t memTypeIndex = m_MemoryTypeIndex;
+ const uint32_t memHeapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(memTypeIndex);
+
+ VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
+
+ for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
+ {
+ const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
+ VMA_ASSERT(pBlock);
+ VMA_HEAVY_ASSERT(pBlock->Validate());
+ VmaStatInfo allocationStatInfo;
+ pBlock->m_pMetadata->CalcAllocationStatInfo(allocationStatInfo);
+ VmaAddStatInfo(pStats->total, allocationStatInfo);
+ VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo);
+ VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo);
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// VmaDefragmentationAlgorithm_Generic members definition
+
+VmaDefragmentationAlgorithm_Generic::VmaDefragmentationAlgorithm_Generic(
+ VmaAllocator hAllocator,
+ VmaBlockVector* pBlockVector,
+ uint32_t currentFrameIndex,
+ bool overlappingMoveSupported) :
+ VmaDefragmentationAlgorithm(hAllocator, pBlockVector, currentFrameIndex),
+ m_AllocationCount(0),
+ m_AllAllocations(false),
+ m_BytesMoved(0),
+ m_AllocationsMoved(0),
+ m_Blocks(VmaStlAllocator<BlockInfo*>(hAllocator->GetAllocationCallbacks()))
+{
+ // Create block info for each block.
+ const size_t blockCount = m_pBlockVector->m_Blocks.size();
+ for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
+ {
+ BlockInfo* pBlockInfo = vma_new(m_hAllocator, BlockInfo)(m_hAllocator->GetAllocationCallbacks());
+ pBlockInfo->m_OriginalBlockIndex = blockIndex;
+ pBlockInfo->m_pBlock = m_pBlockVector->m_Blocks[blockIndex];
+ m_Blocks.push_back(pBlockInfo);
+ }
+
+ // Sort them by m_pBlock pointer value.
+ VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockPointerLess());
+}
+
+VmaDefragmentationAlgorithm_Generic::~VmaDefragmentationAlgorithm_Generic()
+{
+ for(size_t i = m_Blocks.size(); i--; )
+ {
+ vma_delete(m_hAllocator, m_Blocks[i]);
+ }
+}
+
+void VmaDefragmentationAlgorithm_Generic::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged)
+{
+ // Now as we are inside VmaBlockVector::m_Mutex, we can make final check if this allocation was not lost.
+ if(hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST)
+ {
+ VmaDeviceMemoryBlock* pBlock = hAlloc->GetBlock();
+ BlockInfoVector::iterator it = VmaBinaryFindFirstNotLess(m_Blocks.begin(), m_Blocks.end(), pBlock, BlockPointerLess());
+ if(it != m_Blocks.end() && (*it)->m_pBlock == pBlock)
+ {
+ AllocationInfo allocInfo = AllocationInfo(hAlloc, pChanged);
+ (*it)->m_Allocations.push_back(allocInfo);
+ }
+ else
+ {
+ VMA_ASSERT(0);
+ }
+
+ ++m_AllocationCount;
+ }
+}
+
+VkResult VmaDefragmentationAlgorithm_Generic::DefragmentRound(
+ VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
+ VkDeviceSize maxBytesToMove,
+ uint32_t maxAllocationsToMove)
+{
+ if(m_Blocks.empty())
+ {
+ return VK_SUCCESS;
+ }
+
+ // This is a choice based on research.
+ // Option 1:
+ uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT;
+ // Option 2:
+ //uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT;
+ // Option 3:
+ //uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT;
+
+ size_t srcBlockMinIndex = 0;
+ // When FAST_ALGORITHM, move allocations from only last out of blocks that contain non-movable allocations.
+ /*
+ if(m_AlgorithmFlags & VMA_DEFRAGMENTATION_FAST_ALGORITHM_BIT)
+ {
+ const size_t blocksWithNonMovableCount = CalcBlocksWithNonMovableCount();
+ if(blocksWithNonMovableCount > 0)
+ {
+ srcBlockMinIndex = blocksWithNonMovableCount - 1;
+ }
+ }
+ */
+
+ size_t srcBlockIndex = m_Blocks.size() - 1;
+ size_t srcAllocIndex = SIZE_MAX;
+ for(;;)
+ {
+ // 1. Find next allocation to move.
+ // 1.1. Start from last to first m_Blocks - they are sorted from most "destination" to most "source".
+ // 1.2. Then start from last to first m_Allocations.
+ while(srcAllocIndex >= m_Blocks[srcBlockIndex]->m_Allocations.size())
+ {
+ if(m_Blocks[srcBlockIndex]->m_Allocations.empty())
+ {
+ // Finished: no more allocations to process.
+ if(srcBlockIndex == srcBlockMinIndex)
+ {
+ return VK_SUCCESS;
+ }
+ else
+ {
+ --srcBlockIndex;
+ srcAllocIndex = SIZE_MAX;
+ }
+ }
+ else
+ {
+ srcAllocIndex = m_Blocks[srcBlockIndex]->m_Allocations.size() - 1;
+ }
+ }
+
+ BlockInfo* pSrcBlockInfo = m_Blocks[srcBlockIndex];
+ AllocationInfo& allocInfo = pSrcBlockInfo->m_Allocations[srcAllocIndex];
+
+ const VkDeviceSize size = allocInfo.m_hAllocation->GetSize();
+ const VkDeviceSize srcOffset = allocInfo.m_hAllocation->GetOffset();
+ const VkDeviceSize alignment = allocInfo.m_hAllocation->GetAlignment();
+ const VmaSuballocationType suballocType = allocInfo.m_hAllocation->GetSuballocationType();
+
+ // 2. Try to find new place for this allocation in preceding or current block.
+ for(size_t dstBlockIndex = 0; dstBlockIndex <= srcBlockIndex; ++dstBlockIndex)
+ {
+ BlockInfo* pDstBlockInfo = m_Blocks[dstBlockIndex];
+ VmaAllocationRequest dstAllocRequest;
+ if(pDstBlockInfo->m_pBlock->m_pMetadata->CreateAllocationRequest(
+ m_CurrentFrameIndex,
+ m_pBlockVector->GetFrameInUseCount(),
+ m_pBlockVector->GetBufferImageGranularity(),
+ size,
+ alignment,
+ false, // upperAddress
+ suballocType,
+ false, // canMakeOtherLost
+ strategy,
+ &dstAllocRequest) &&
+ MoveMakesSense(
+ dstBlockIndex, dstAllocRequest.offset, srcBlockIndex, srcOffset))
+ {
+ VMA_ASSERT(dstAllocRequest.itemsToMakeLostCount == 0);
+
+ // Reached limit on number of allocations or bytes to move.
+ if((m_AllocationsMoved + 1 > maxAllocationsToMove) ||
+ (m_BytesMoved + size > maxBytesToMove))
+ {
+ return VK_SUCCESS;
+ }
+
+ VmaDefragmentationMove move;
+ move.srcBlockIndex = pSrcBlockInfo->m_OriginalBlockIndex;
+ move.dstBlockIndex = pDstBlockInfo->m_OriginalBlockIndex;
+ move.srcOffset = srcOffset;
+ move.dstOffset = dstAllocRequest.offset;
+ move.size = size;
+ moves.push_back(move);
+
+ pDstBlockInfo->m_pBlock->m_pMetadata->Alloc(
+ dstAllocRequest,
+ suballocType,
+ size,
+ allocInfo.m_hAllocation);
+ pSrcBlockInfo->m_pBlock->m_pMetadata->FreeAtOffset(srcOffset);
+
+ allocInfo.m_hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlockInfo->m_pBlock, dstAllocRequest.offset);
+
+ if(allocInfo.m_pChanged != VMA_NULL)
+ {
+ *allocInfo.m_pChanged = VK_TRUE;
+ }
+
+ ++m_AllocationsMoved;
+ m_BytesMoved += size;
+
+ VmaVectorRemove(pSrcBlockInfo->m_Allocations, srcAllocIndex);
+
+ break;
+ }
+ }
+
+ // If not processed, this allocInfo remains in pBlockInfo->m_Allocations for next round.
+
+ if(srcAllocIndex > 0)
+ {
+ --srcAllocIndex;
+ }
+ else
+ {
+ if(srcBlockIndex > 0)
+ {
+ --srcBlockIndex;
+ srcAllocIndex = SIZE_MAX;
+ }
+ else
+ {
+ return VK_SUCCESS;
+ }
+ }
+ }
+}
+
+size_t VmaDefragmentationAlgorithm_Generic::CalcBlocksWithNonMovableCount() const
+{
+ size_t result = 0;
+ for(size_t i = 0; i < m_Blocks.size(); ++i)
+ {
+ if(m_Blocks[i]->m_HasNonMovableAllocations)
+ {
+ ++result;
+ }
+ }
+ return result;
+}
+
+VkResult VmaDefragmentationAlgorithm_Generic::Defragment(
+ VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
+ VkDeviceSize maxBytesToMove,
+ uint32_t maxAllocationsToMove)
+{
+ if(!m_AllAllocations && m_AllocationCount == 0)
+ {
+ return VK_SUCCESS;
+ }
+
+ const size_t blockCount = m_Blocks.size();
+ for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
+ {
+ BlockInfo* pBlockInfo = m_Blocks[blockIndex];
+
+ if(m_AllAllocations)
+ {
+ VmaBlockMetadata_Generic* pMetadata = (VmaBlockMetadata_Generic*)pBlockInfo->m_pBlock->m_pMetadata;
+ for(VmaSuballocationList::const_iterator it = pMetadata->m_Suballocations.begin();
+ it != pMetadata->m_Suballocations.end();
+ ++it)
+ {
+ if(it->type != VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ AllocationInfo allocInfo = AllocationInfo(it->hAllocation, VMA_NULL);
+ pBlockInfo->m_Allocations.push_back(allocInfo);
+ }
+ }
+ }
+
+ pBlockInfo->CalcHasNonMovableAllocations();
+
+ // This is a choice based on research.
+ // Option 1:
+ pBlockInfo->SortAllocationsByOffsetDescending();
+ // Option 2:
+ //pBlockInfo->SortAllocationsBySizeDescending();
+ }
+
+ // Sort m_Blocks this time by the main criterium, from most "destination" to most "source" blocks.
+ VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockInfoCompareMoveDestination());
+
+ // This is a choice based on research.
+ const uint32_t roundCount = 2;
+
+ // Execute defragmentation rounds (the main part).
+ VkResult result = VK_SUCCESS;
+ for(uint32_t round = 0; (round < roundCount) && (result == VK_SUCCESS); ++round)
+ {
+ result = DefragmentRound(moves, maxBytesToMove, maxAllocationsToMove);
+ }
+
+ return result;
+}
+
+bool VmaDefragmentationAlgorithm_Generic::MoveMakesSense(
+ size_t dstBlockIndex, VkDeviceSize dstOffset,
+ size_t srcBlockIndex, VkDeviceSize srcOffset)
+{
+ if(dstBlockIndex < srcBlockIndex)
+ {
+ return true;
+ }
+ if(dstBlockIndex > srcBlockIndex)
+ {
+ return false;
+ }
+ if(dstOffset < srcOffset)
+ {
+ return true;
+ }
+ return false;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// VmaDefragmentationAlgorithm_Fast
+
+VmaDefragmentationAlgorithm_Fast::VmaDefragmentationAlgorithm_Fast(
+ VmaAllocator hAllocator,
+ VmaBlockVector* pBlockVector,
+ uint32_t currentFrameIndex,
+ bool overlappingMoveSupported) :
+ VmaDefragmentationAlgorithm(hAllocator, pBlockVector, currentFrameIndex),
+ m_OverlappingMoveSupported(overlappingMoveSupported),
+ m_AllocationCount(0),
+ m_AllAllocations(false),
+ m_BytesMoved(0),
+ m_AllocationsMoved(0),
+ m_BlockInfos(VmaStlAllocator<BlockInfo>(hAllocator->GetAllocationCallbacks()))
+{
+ VMA_ASSERT(VMA_DEBUG_MARGIN == 0);
+
+}
+
+VmaDefragmentationAlgorithm_Fast::~VmaDefragmentationAlgorithm_Fast()
+{
+}
+
+VkResult VmaDefragmentationAlgorithm_Fast::Defragment(
+ VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
+ VkDeviceSize maxBytesToMove,
+ uint32_t maxAllocationsToMove)
+{
+ VMA_ASSERT(m_AllAllocations || m_pBlockVector->CalcAllocationCount() == m_AllocationCount);
+
+ const size_t blockCount = m_pBlockVector->GetBlockCount();
+ if(blockCount == 0 || maxBytesToMove == 0 || maxAllocationsToMove == 0)
+ {
+ return VK_SUCCESS;
+ }
+
+ PreprocessMetadata();
+
+ // Sort blocks in order from most destination.
+
+ m_BlockInfos.resize(blockCount);
+ for(size_t i = 0; i < blockCount; ++i)
+ {
+ m_BlockInfos[i].origBlockIndex = i;
+ }
+
+ VMA_SORT(m_BlockInfos.begin(), m_BlockInfos.end(), [this](const BlockInfo& lhs, const BlockInfo& rhs) -> bool {
+ return m_pBlockVector->GetBlock(lhs.origBlockIndex)->m_pMetadata->GetSumFreeSize() <
+ m_pBlockVector->GetBlock(rhs.origBlockIndex)->m_pMetadata->GetSumFreeSize();
+ });
+
+ // THE MAIN ALGORITHM
+
+ FreeSpaceDatabase freeSpaceDb;
+
+ size_t dstBlockInfoIndex = 0;
+ size_t dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex;
+ VmaDeviceMemoryBlock* pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex);
+ VmaBlockMetadata_Generic* pDstMetadata = (VmaBlockMetadata_Generic*)pDstBlock->m_pMetadata;
+ VkDeviceSize dstBlockSize = pDstMetadata->GetSize();
+ VkDeviceSize dstOffset = 0;
+
+ bool end = false;
+ for(size_t srcBlockInfoIndex = 0; !end && srcBlockInfoIndex < blockCount; ++srcBlockInfoIndex)
+ {
+ const size_t srcOrigBlockIndex = m_BlockInfos[srcBlockInfoIndex].origBlockIndex;
+ VmaDeviceMemoryBlock* const pSrcBlock = m_pBlockVector->GetBlock(srcOrigBlockIndex);
+ VmaBlockMetadata_Generic* const pSrcMetadata = (VmaBlockMetadata_Generic*)pSrcBlock->m_pMetadata;
+ for(VmaSuballocationList::iterator srcSuballocIt = pSrcMetadata->m_Suballocations.begin();
+ !end && srcSuballocIt != pSrcMetadata->m_Suballocations.end(); )
+ {
+ VmaAllocation_T* const pAlloc = srcSuballocIt->hAllocation;
+ const VkDeviceSize srcAllocAlignment = pAlloc->GetAlignment();
+ const VkDeviceSize srcAllocSize = srcSuballocIt->size;
+ if(m_AllocationsMoved == maxAllocationsToMove ||
+ m_BytesMoved + srcAllocSize > maxBytesToMove)
+ {
+ end = true;
+ break;
+ }
+ const VkDeviceSize srcAllocOffset = srcSuballocIt->offset;
+
+ // Try to place it in one of free spaces from the database.
+ size_t freeSpaceInfoIndex;
+ VkDeviceSize dstAllocOffset;
+ if(freeSpaceDb.Fetch(srcAllocAlignment, srcAllocSize,
+ freeSpaceInfoIndex, dstAllocOffset))
+ {
+ size_t freeSpaceOrigBlockIndex = m_BlockInfos[freeSpaceInfoIndex].origBlockIndex;
+ VmaDeviceMemoryBlock* pFreeSpaceBlock = m_pBlockVector->GetBlock(freeSpaceOrigBlockIndex);
+ VmaBlockMetadata_Generic* pFreeSpaceMetadata = (VmaBlockMetadata_Generic*)pFreeSpaceBlock->m_pMetadata;
+
+ // Same block
+ if(freeSpaceInfoIndex == srcBlockInfoIndex)
+ {
+ VMA_ASSERT(dstAllocOffset <= srcAllocOffset);
+
+ // MOVE OPTION 1: Move the allocation inside the same block by decreasing offset.
+
+ VmaSuballocation suballoc = *srcSuballocIt;
+ suballoc.offset = dstAllocOffset;
+ suballoc.hAllocation->ChangeOffset(dstAllocOffset);
+ m_BytesMoved += srcAllocSize;
+ ++m_AllocationsMoved;
+
+ VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt;
+ ++nextSuballocIt;
+ pSrcMetadata->m_Suballocations.erase(srcSuballocIt);
+ srcSuballocIt = nextSuballocIt;
+
+ InsertSuballoc(pFreeSpaceMetadata, suballoc);
+
+ VmaDefragmentationMove move = {
+ srcOrigBlockIndex, freeSpaceOrigBlockIndex,
+ srcAllocOffset, dstAllocOffset,
+ srcAllocSize };
+ moves.push_back(move);
+ }
+ // Different block
+ else
+ {
+ // MOVE OPTION 2: Move the allocation to a different block.
+
+ VMA_ASSERT(freeSpaceInfoIndex < srcBlockInfoIndex);
+
+ VmaSuballocation suballoc = *srcSuballocIt;
+ suballoc.offset = dstAllocOffset;
+ suballoc.hAllocation->ChangeBlockAllocation(m_hAllocator, pFreeSpaceBlock, dstAllocOffset);
+ m_BytesMoved += srcAllocSize;
+ ++m_AllocationsMoved;
+
+ VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt;
+ ++nextSuballocIt;
+ pSrcMetadata->m_Suballocations.erase(srcSuballocIt);
+ srcSuballocIt = nextSuballocIt;
+
+ InsertSuballoc(pFreeSpaceMetadata, suballoc);
+
+ VmaDefragmentationMove move = {
+ srcOrigBlockIndex, freeSpaceOrigBlockIndex,
+ srcAllocOffset, dstAllocOffset,
+ srcAllocSize };
+ moves.push_back(move);
+ }
+ }
+ else
+ {
+ dstAllocOffset = VmaAlignUp(dstOffset, srcAllocAlignment);
+
+ // If the allocation doesn't fit before the end of dstBlock, forward to next block.
+ while(dstBlockInfoIndex < srcBlockInfoIndex &&
+ dstAllocOffset + srcAllocSize > dstBlockSize)
+ {
+ // But before that, register remaining free space at the end of dst block.
+ freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, dstBlockSize - dstOffset);
+
+ ++dstBlockInfoIndex;
+ dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex;
+ pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex);
+ pDstMetadata = (VmaBlockMetadata_Generic*)pDstBlock->m_pMetadata;
+ dstBlockSize = pDstMetadata->GetSize();
+ dstOffset = 0;
+ dstAllocOffset = 0;
+ }
+
+ // Same block
+ if(dstBlockInfoIndex == srcBlockInfoIndex)
+ {
+ VMA_ASSERT(dstAllocOffset <= srcAllocOffset);
+
+ const bool overlap = dstAllocOffset + srcAllocSize > srcAllocOffset;
+
+ bool skipOver = overlap;
+ if(overlap && m_OverlappingMoveSupported && dstAllocOffset < srcAllocOffset)
+ {
+ // If destination and source place overlap, skip if it would move it
+ // by only < 1/64 of its size.
+ skipOver = (srcAllocOffset - dstAllocOffset) * 64 < srcAllocSize;
+ }
+
+ if(skipOver)
+ {
+ freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, srcAllocOffset - dstOffset);
+
+ dstOffset = srcAllocOffset + srcAllocSize;
+ ++srcSuballocIt;
+ }
+ // MOVE OPTION 1: Move the allocation inside the same block by decreasing offset.
+ else
+ {
+ srcSuballocIt->offset = dstAllocOffset;
+ srcSuballocIt->hAllocation->ChangeOffset(dstAllocOffset);
+ dstOffset = dstAllocOffset + srcAllocSize;
+ m_BytesMoved += srcAllocSize;
+ ++m_AllocationsMoved;
+ ++srcSuballocIt;
+ VmaDefragmentationMove move = {
+ srcOrigBlockIndex, dstOrigBlockIndex,
+ srcAllocOffset, dstAllocOffset,
+ srcAllocSize };
+ moves.push_back(move);
+ }
+ }
+ // Different block
+ else
+ {
+ // MOVE OPTION 2: Move the allocation to a different block.
+
+ VMA_ASSERT(dstBlockInfoIndex < srcBlockInfoIndex);
+ VMA_ASSERT(dstAllocOffset + srcAllocSize <= dstBlockSize);
+
+ VmaSuballocation suballoc = *srcSuballocIt;
+ suballoc.offset = dstAllocOffset;
+ suballoc.hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlock, dstAllocOffset);
+ dstOffset = dstAllocOffset + srcAllocSize;
+ m_BytesMoved += srcAllocSize;
+ ++m_AllocationsMoved;
+
+ VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt;
+ ++nextSuballocIt;
+ pSrcMetadata->m_Suballocations.erase(srcSuballocIt);
+ srcSuballocIt = nextSuballocIt;
+
+ pDstMetadata->m_Suballocations.push_back(suballoc);
+
+ VmaDefragmentationMove move = {
+ srcOrigBlockIndex, dstOrigBlockIndex,
+ srcAllocOffset, dstAllocOffset,
+ srcAllocSize };
+ moves.push_back(move);
+ }
+ }
+ }
+ }
+
+ m_BlockInfos.clear();
+
+ PostprocessMetadata();
+
+ return VK_SUCCESS;
+}
+
+void VmaDefragmentationAlgorithm_Fast::PreprocessMetadata()
+{
+ const size_t blockCount = m_pBlockVector->GetBlockCount();
+ for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
+ {
+ VmaBlockMetadata_Generic* const pMetadata =
+ (VmaBlockMetadata_Generic*)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata;
+ pMetadata->m_FreeCount = 0;
+ pMetadata->m_SumFreeSize = pMetadata->GetSize();
+ pMetadata->m_FreeSuballocationsBySize.clear();
+ for(VmaSuballocationList::iterator it = pMetadata->m_Suballocations.begin();
+ it != pMetadata->m_Suballocations.end(); )
+ {
+ if(it->type == VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ VmaSuballocationList::iterator nextIt = it;
+ ++nextIt;
+ pMetadata->m_Suballocations.erase(it);
+ it = nextIt;
+ }
+ else
+ {
+ ++it;
+ }
+ }
+ }
+}
+
+void VmaDefragmentationAlgorithm_Fast::PostprocessMetadata()
+{
+ const size_t blockCount = m_pBlockVector->GetBlockCount();
+ for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
+ {
+ VmaBlockMetadata_Generic* const pMetadata =
+ (VmaBlockMetadata_Generic*)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata;
+ const VkDeviceSize blockSize = pMetadata->GetSize();
+
+ // No allocations in this block - entire area is free.
+ if(pMetadata->m_Suballocations.empty())
+ {
+ pMetadata->m_FreeCount = 1;
+ //pMetadata->m_SumFreeSize is already set to blockSize.
+ VmaSuballocation suballoc = {
+ 0, // offset
+ blockSize, // size
+ VMA_NULL, // hAllocation
+ VMA_SUBALLOCATION_TYPE_FREE };
+ pMetadata->m_Suballocations.push_back(suballoc);
+ pMetadata->RegisterFreeSuballocation(pMetadata->m_Suballocations.begin());
+ }
+ // There are some allocations in this block.
+ else
+ {
+ VkDeviceSize offset = 0;
+ VmaSuballocationList::iterator it;
+ for(it = pMetadata->m_Suballocations.begin();
+ it != pMetadata->m_Suballocations.end();
+ ++it)
+ {
+ VMA_ASSERT(it->type != VMA_SUBALLOCATION_TYPE_FREE);
+ VMA_ASSERT(it->offset >= offset);
+
+ // Need to insert preceding free space.
+ if(it->offset > offset)
+ {
+ ++pMetadata->m_FreeCount;
+ const VkDeviceSize freeSize = it->offset - offset;
+ VmaSuballocation suballoc = {
+ offset, // offset
+ freeSize, // size
+ VMA_NULL, // hAllocation
+ VMA_SUBALLOCATION_TYPE_FREE };
+ VmaSuballocationList::iterator precedingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc);
+ if(freeSize >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
+ {
+ pMetadata->m_FreeSuballocationsBySize.push_back(precedingFreeIt);
+ }
+ }
+
+ pMetadata->m_SumFreeSize -= it->size;
+ offset = it->offset + it->size;
+ }
+
+ // Need to insert trailing free space.
+ if(offset < blockSize)
+ {
+ ++pMetadata->m_FreeCount;
+ const VkDeviceSize freeSize = blockSize - offset;
+ VmaSuballocation suballoc = {
+ offset, // offset
+ freeSize, // size
+ VMA_NULL, // hAllocation
+ VMA_SUBALLOCATION_TYPE_FREE };
+ VMA_ASSERT(it == pMetadata->m_Suballocations.end());
+ VmaSuballocationList::iterator trailingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc);
+ if(freeSize > VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
+ {
+ pMetadata->m_FreeSuballocationsBySize.push_back(trailingFreeIt);
+ }
+ }
+
+ VMA_SORT(
+ pMetadata->m_FreeSuballocationsBySize.begin(),
+ pMetadata->m_FreeSuballocationsBySize.end(),
+ VmaSuballocationItemSizeLess());
+ }
+
+ VMA_HEAVY_ASSERT(pMetadata->Validate());
+ }
+}
+
+void VmaDefragmentationAlgorithm_Fast::InsertSuballoc(VmaBlockMetadata_Generic* pMetadata, const VmaSuballocation& suballoc)
+{
+ // TODO: Optimize somehow. Remember iterator instead of searching for it linearly.
+ VmaSuballocationList::iterator it = pMetadata->m_Suballocations.begin();
+ while(it != pMetadata->m_Suballocations.end())
+ {
+ if(it->offset < suballoc.offset)
+ {
+ ++it;
+ }
+ }
+ pMetadata->m_Suballocations.insert(it, suballoc);
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// VmaBlockVectorDefragmentationContext
+
+VmaBlockVectorDefragmentationContext::VmaBlockVectorDefragmentationContext(
+ VmaAllocator hAllocator,
+ VmaPool hCustomPool,
+ VmaBlockVector* pBlockVector,
+ uint32_t currFrameIndex) :
+ res(VK_SUCCESS),
+ mutexLocked(false),
+ blockContexts(VmaStlAllocator<VmaBlockDefragmentationContext>(hAllocator->GetAllocationCallbacks())),
+ m_hAllocator(hAllocator),
+ m_hCustomPool(hCustomPool),
+ m_pBlockVector(pBlockVector),
+ m_CurrFrameIndex(currFrameIndex),
+ m_pAlgorithm(VMA_NULL),
+ m_Allocations(VmaStlAllocator<AllocInfo>(hAllocator->GetAllocationCallbacks())),
+ m_AllAllocations(false)
+{
+}
+
+VmaBlockVectorDefragmentationContext::~VmaBlockVectorDefragmentationContext()
+{
+ vma_delete(m_hAllocator, m_pAlgorithm);
+}
+
+void VmaBlockVectorDefragmentationContext::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged)
+{
+ AllocInfo info = { hAlloc, pChanged };
+ m_Allocations.push_back(info);
+}
+
+void VmaBlockVectorDefragmentationContext::Begin(bool overlappingMoveSupported)
+{
+ const bool allAllocations = m_AllAllocations ||
+ m_Allocations.size() == m_pBlockVector->CalcAllocationCount();
+
+ /********************************
+ HERE IS THE CHOICE OF DEFRAGMENTATION ALGORITHM.
+ ********************************/
+
+ /*
+ Fast algorithm is supported only when certain criteria are met:
+ - VMA_DEBUG_MARGIN is 0.
+ - All allocations in this block vector are moveable.
+ - There is no possibility of image/buffer granularity conflict.
+ */
+ if(VMA_DEBUG_MARGIN == 0 &&
+ allAllocations &&
+ !m_pBlockVector->IsBufferImageGranularityConflictPossible())
+ {
+ m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Fast)(
+ m_hAllocator, m_pBlockVector, m_CurrFrameIndex, overlappingMoveSupported);
+ }
+ else
+ {
+ m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Generic)(
+ m_hAllocator, m_pBlockVector, m_CurrFrameIndex, overlappingMoveSupported);
+ }
+
+ if(allAllocations)
+ {
+ m_pAlgorithm->AddAll();
+ }
+ else
+ {
+ for(size_t i = 0, count = m_Allocations.size(); i < count; ++i)
+ {
+ m_pAlgorithm->AddAllocation(m_Allocations[i].hAlloc, m_Allocations[i].pChanged);
+ }
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// VmaDefragmentationContext
+
+VmaDefragmentationContext_T::VmaDefragmentationContext_T(
+ VmaAllocator hAllocator,
+ uint32_t currFrameIndex,
+ uint32_t flags,
+ VmaDefragmentationStats* pStats) :
+ m_hAllocator(hAllocator),
+ m_CurrFrameIndex(currFrameIndex),
+ m_Flags(flags),
+ m_pStats(pStats),
+ m_CustomPoolContexts(VmaStlAllocator<VmaBlockVectorDefragmentationContext*>(hAllocator->GetAllocationCallbacks()))
+{
+ memset(m_DefaultPoolContexts, 0, sizeof(m_DefaultPoolContexts));
+}
+
+VmaDefragmentationContext_T::~VmaDefragmentationContext_T()
+{
+ for(size_t i = m_CustomPoolContexts.size(); i--; )
+ {
+ VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[i];
+ pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_pStats);
+ vma_delete(m_hAllocator, pBlockVectorCtx);
+ }
+ for(size_t i = m_hAllocator->m_MemProps.memoryTypeCount; i--; )
+ {
+ VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[i];
+ if(pBlockVectorCtx)
+ {
+ pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_pStats);
+ vma_delete(m_hAllocator, pBlockVectorCtx);
+ }
+ }
+}
+
+void VmaDefragmentationContext_T::AddPools(uint32_t poolCount, VmaPool* pPools)
+{
+ for(uint32_t poolIndex = 0; poolIndex < poolCount; ++poolIndex)
+ {
+ VmaPool pool = pPools[poolIndex];
+ VMA_ASSERT(pool);
+ // Pools with algorithm other than default are not defragmented.
+ if(pool->m_BlockVector.GetAlgorithm() == 0)
+ {
+ VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL;
+
+ for(size_t i = m_CustomPoolContexts.size(); i--; )
+ {
+ if(m_CustomPoolContexts[i]->GetCustomPool() == pool)
+ {
+ pBlockVectorDefragCtx = m_CustomPoolContexts[i];
+ break;
+ }
+ }
+
+ if(!pBlockVectorDefragCtx)
+ {
+ pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)(
+ m_hAllocator,
+ pool,
+ &pool->m_BlockVector,
+ m_CurrFrameIndex);
+ m_CustomPoolContexts.push_back(pBlockVectorDefragCtx);
+ }
+
+ pBlockVectorDefragCtx->AddAll();
+ }
+ }
+}
+
+void VmaDefragmentationContext_T::AddAllocations(
+ uint32_t allocationCount,
+ VmaAllocation* pAllocations,
+ VkBool32* pAllocationsChanged)
+{
+ // Dispatch pAllocations among defragmentators. Create them when necessary.
+ for(uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
+ {
+ const VmaAllocation hAlloc = pAllocations[allocIndex];
+ VMA_ASSERT(hAlloc);
+ // DedicatedAlloc cannot be defragmented.
+ if((hAlloc->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK) &&
+ // Lost allocation cannot be defragmented.
+ (hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST))
+ {
+ VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL;
+
+ const VmaPool hAllocPool = hAlloc->GetBlock()->GetParentPool();
+ // This allocation belongs to custom pool.
+ if(hAllocPool != VK_NULL_HANDLE)
+ {
+ // Pools with algorithm other than default are not defragmented.
+ if(hAllocPool->m_BlockVector.GetAlgorithm() == 0)
+ {
+ for(size_t i = m_CustomPoolContexts.size(); i--; )
+ {
+ if(m_CustomPoolContexts[i]->GetCustomPool() == hAllocPool)
+ {
+ pBlockVectorDefragCtx = m_CustomPoolContexts[i];
+ break;
+ }
+ }
+ if(!pBlockVectorDefragCtx)
+ {
+ pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)(
+ m_hAllocator,
+ hAllocPool,
+ &hAllocPool->m_BlockVector,
+ m_CurrFrameIndex);
+ m_CustomPoolContexts.push_back(pBlockVectorDefragCtx);
+ }
+ }
+ }
+ // This allocation belongs to default pool.
+ else
+ {
+ const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex();
+ pBlockVectorDefragCtx = m_DefaultPoolContexts[memTypeIndex];
+ if(!pBlockVectorDefragCtx)
+ {
+ pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)(
+ m_hAllocator,
+ VMA_NULL, // hCustomPool
+ m_hAllocator->m_pBlockVectors[memTypeIndex],
+ m_CurrFrameIndex);
+ m_DefaultPoolContexts[memTypeIndex] = pBlockVectorDefragCtx;
+ }
+ }
+
+ if(pBlockVectorDefragCtx)
+ {
+ VkBool32* const pChanged = (pAllocationsChanged != VMA_NULL) ?
+ &pAllocationsChanged[allocIndex] : VMA_NULL;
+ pBlockVectorDefragCtx->AddAllocation(hAlloc, pChanged);
+ }
+ }
+ }
+}
+
+VkResult VmaDefragmentationContext_T::Defragment(
+ VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove,
+ VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove,
+ VkCommandBuffer commandBuffer, VmaDefragmentationStats* pStats)
+{
+ if(pStats)
+ {
+ memset(pStats, 0, sizeof(VmaDefragmentationStats));
+ }
+
+ if(commandBuffer == VK_NULL_HANDLE)
+ {
+ maxGpuBytesToMove = 0;
+ maxGpuAllocationsToMove = 0;
+ }
+
+ VkResult res = VK_SUCCESS;
+
+ // Process default pools.
+ for(uint32_t memTypeIndex = 0;
+ memTypeIndex < m_hAllocator->GetMemoryTypeCount() && res >= VK_SUCCESS;
+ ++memTypeIndex)
+ {
+ VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex];
+ if(pBlockVectorCtx)
+ {
+ VMA_ASSERT(pBlockVectorCtx->GetBlockVector());
+ pBlockVectorCtx->GetBlockVector()->Defragment(
+ pBlockVectorCtx,
+ pStats,
+ maxCpuBytesToMove, maxCpuAllocationsToMove,
+ maxGpuBytesToMove, maxGpuAllocationsToMove,
+ commandBuffer);
+ if(pBlockVectorCtx->res != VK_SUCCESS)
+ {
+ res = pBlockVectorCtx->res;
+ }
+ }
+ }
+
+ // Process custom pools.
+ for(size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size();
+ customCtxIndex < customCtxCount && res >= VK_SUCCESS;
+ ++customCtxIndex)
+ {
+ VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex];
+ VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector());
+ pBlockVectorCtx->GetBlockVector()->Defragment(
+ pBlockVectorCtx,
+ pStats,
+ maxCpuBytesToMove, maxCpuAllocationsToMove,
+ maxGpuBytesToMove, maxGpuAllocationsToMove,
+ commandBuffer);
+ if(pBlockVectorCtx->res != VK_SUCCESS)
+ {
+ res = pBlockVectorCtx->res;
+ }
+ }
+
+ return res;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// VmaRecorder
+
+#if VMA_RECORDING_ENABLED
+
+VmaRecorder::VmaRecorder() :
+ m_UseMutex(true),
+ m_Flags(0),
+ m_File(VMA_NULL),
+ m_Freq(INT64_MAX),
+ m_StartCounter(INT64_MAX)
+{
+}
+
+VkResult VmaRecorder::Init(const VmaRecordSettings& settings, bool useMutex)
+{
+ m_UseMutex = useMutex;
+ m_Flags = settings.flags;
+
+ QueryPerformanceFrequency((LARGE_INTEGER*)&m_Freq);
+ QueryPerformanceCounter((LARGE_INTEGER*)&m_StartCounter);
+
+ // Open file for writing.
+ errno_t err = fopen_s(&m_File, settings.pFilePath, "wb");
+ if(err != 0)
+ {
+ return VK_ERROR_INITIALIZATION_FAILED;
+ }
+
+ // Write header.
+ fprintf(m_File, "%s\n", "Vulkan Memory Allocator,Calls recording");
+ fprintf(m_File, "%s\n", "1,6");
+
+ return VK_SUCCESS;
+}
+
+VmaRecorder::~VmaRecorder()
+{
+ if(m_File != VMA_NULL)
+ {
+ fclose(m_File);
+ }
+}
+
+void VmaRecorder::RecordCreateAllocator(uint32_t frameIndex)
+{
+ CallParams callParams;
+ GetBasicParams(callParams);
+
+ VmaMutexLock lock(m_FileMutex, m_UseMutex);
+ fprintf(m_File, "%u,%.3f,%u,vmaCreateAllocator\n", callParams.threadId, callParams.time, frameIndex);
+ Flush();
+}
+
+void VmaRecorder::RecordDestroyAllocator(uint32_t frameIndex)
+{
+ CallParams callParams;
+ GetBasicParams(callParams);
+
+ VmaMutexLock lock(m_FileMutex, m_UseMutex);
+ fprintf(m_File, "%u,%.3f,%u,vmaDestroyAllocator\n", callParams.threadId, callParams.time, frameIndex);
+ Flush();
+}
+
+void VmaRecorder::RecordCreatePool(uint32_t frameIndex, const VmaPoolCreateInfo& createInfo, VmaPool pool)
+{
+ CallParams callParams;
+ GetBasicParams(callParams);
+
+ VmaMutexLock lock(m_FileMutex, m_UseMutex);
+ fprintf(m_File, "%u,%.3f,%u,vmaCreatePool,%u,%u,%llu,%llu,%llu,%u,%p\n", callParams.threadId, callParams.time, frameIndex,
+ createInfo.memoryTypeIndex,
+ createInfo.flags,
+ createInfo.blockSize,
+ (uint64_t)createInfo.minBlockCount,
+ (uint64_t)createInfo.maxBlockCount,
+ createInfo.frameInUseCount,
+ pool);
+ Flush();
+}
+
+void VmaRecorder::RecordDestroyPool(uint32_t frameIndex, VmaPool pool)
+{
+ CallParams callParams;
+ GetBasicParams(callParams);
+
+ VmaMutexLock lock(m_FileMutex, m_UseMutex);
+ fprintf(m_File, "%u,%.3f,%u,vmaDestroyPool,%p\n", callParams.threadId, callParams.time, frameIndex,
+ pool);
+ Flush();
+}
+
+void VmaRecorder::RecordAllocateMemory(uint32_t frameIndex,
+ const VkMemoryRequirements& vkMemReq,
+ const VmaAllocationCreateInfo& createInfo,
+ VmaAllocation allocation)
+{
+ CallParams callParams;
+ GetBasicParams(callParams);
+
+ VmaMutexLock lock(m_FileMutex, m_UseMutex);
+ UserDataString userDataStr(createInfo.flags, createInfo.pUserData);
+ fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemory,%llu,%llu,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
+ vkMemReq.size,
+ vkMemReq.alignment,
+ vkMemReq.memoryTypeBits,
+ createInfo.flags,
+ createInfo.usage,
+ createInfo.requiredFlags,
+ createInfo.preferredFlags,
+ createInfo.memoryTypeBits,
+ createInfo.pool,
+ allocation,
+ userDataStr.GetString());
+ Flush();
+}
+
+void VmaRecorder::RecordAllocateMemoryPages(uint32_t frameIndex,
+ const VkMemoryRequirements& vkMemReq,
+ const VmaAllocationCreateInfo& createInfo,
+ uint64_t allocationCount,
+ const VmaAllocation* pAllocations)
+{
+ CallParams callParams;
+ GetBasicParams(callParams);
+
+ VmaMutexLock lock(m_FileMutex, m_UseMutex);
+ UserDataString userDataStr(createInfo.flags, createInfo.pUserData);
+ fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryPages,%llu,%llu,%u,%u,%u,%u,%u,%u,%p,", callParams.threadId, callParams.time, frameIndex,
+ vkMemReq.size,
+ vkMemReq.alignment,
+ vkMemReq.memoryTypeBits,
+ createInfo.flags,
+ createInfo.usage,
+ createInfo.requiredFlags,
+ createInfo.preferredFlags,
+ createInfo.memoryTypeBits,
+ createInfo.pool);
+ PrintPointerList(allocationCount, pAllocations);
+ fprintf(m_File, ",%s\n", userDataStr.GetString());
+ Flush();
+}
+
+void VmaRecorder::RecordAllocateMemoryForBuffer(uint32_t frameIndex,
+ const VkMemoryRequirements& vkMemReq,
+ bool requiresDedicatedAllocation,
+ bool prefersDedicatedAllocation,
+ const VmaAllocationCreateInfo& createInfo,
+ VmaAllocation allocation)
+{
+ CallParams callParams;
+ GetBasicParams(callParams);
+
+ VmaMutexLock lock(m_FileMutex, m_UseMutex);
+ UserDataString userDataStr(createInfo.flags, createInfo.pUserData);
+ fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryForBuffer,%llu,%llu,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
+ vkMemReq.size,
+ vkMemReq.alignment,
+ vkMemReq.memoryTypeBits,
+ requiresDedicatedAllocation ? 1 : 0,
+ prefersDedicatedAllocation ? 1 : 0,
+ createInfo.flags,
+ createInfo.usage,
+ createInfo.requiredFlags,
+ createInfo.preferredFlags,
+ createInfo.memoryTypeBits,
+ createInfo.pool,
+ allocation,
+ userDataStr.GetString());
+ Flush();
+}
+
+void VmaRecorder::RecordAllocateMemoryForImage(uint32_t frameIndex,
+ const VkMemoryRequirements& vkMemReq,
+ bool requiresDedicatedAllocation,
+ bool prefersDedicatedAllocation,
+ const VmaAllocationCreateInfo& createInfo,
+ VmaAllocation allocation)
+{
+ CallParams callParams;
+ GetBasicParams(callParams);
+
+ VmaMutexLock lock(m_FileMutex, m_UseMutex);
+ UserDataString userDataStr(createInfo.flags, createInfo.pUserData);
+ fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryForImage,%llu,%llu,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
+ vkMemReq.size,
+ vkMemReq.alignment,
+ vkMemReq.memoryTypeBits,
+ requiresDedicatedAllocation ? 1 : 0,
+ prefersDedicatedAllocation ? 1 : 0,
+ createInfo.flags,
+ createInfo.usage,
+ createInfo.requiredFlags,
+ createInfo.preferredFlags,
+ createInfo.memoryTypeBits,
+ createInfo.pool,
+ allocation,
+ userDataStr.GetString());
+ Flush();
+}
+
+void VmaRecorder::RecordFreeMemory(uint32_t frameIndex,
+ VmaAllocation allocation)
+{
+ CallParams callParams;
+ GetBasicParams(callParams);
+
+ VmaMutexLock lock(m_FileMutex, m_UseMutex);
+ fprintf(m_File, "%u,%.3f,%u,vmaFreeMemory,%p\n", callParams.threadId, callParams.time, frameIndex,
+ allocation);
+ Flush();
+}
+
+void VmaRecorder::RecordFreeMemoryPages(uint32_t frameIndex,
+ uint64_t allocationCount,
+ const VmaAllocation* pAllocations)
+{
+ CallParams callParams;
+ GetBasicParams(callParams);
+
+ VmaMutexLock lock(m_FileMutex, m_UseMutex);
+ fprintf(m_File, "%u,%.3f,%u,vmaFreeMemoryPages,", callParams.threadId, callParams.time, frameIndex);
+ PrintPointerList(allocationCount, pAllocations);
+ fprintf(m_File, "\n");
+ Flush();
+}
+
+void VmaRecorder::RecordSetAllocationUserData(uint32_t frameIndex,
+ VmaAllocation allocation,
+ const void* pUserData)
+{
+ CallParams callParams;
+ GetBasicParams(callParams);
+
+ VmaMutexLock lock(m_FileMutex, m_UseMutex);
+ UserDataString userDataStr(
+ allocation->IsUserDataString() ? VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT : 0,
+ pUserData);
+ fprintf(m_File, "%u,%.3f,%u,vmaSetAllocationUserData,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
+ allocation,
+ userDataStr.GetString());
+ Flush();
+}
+
+void VmaRecorder::RecordCreateLostAllocation(uint32_t frameIndex,
+ VmaAllocation allocation)
+{
+ CallParams callParams;
+ GetBasicParams(callParams);
+
+ VmaMutexLock lock(m_FileMutex, m_UseMutex);
+ fprintf(m_File, "%u,%.3f,%u,vmaCreateLostAllocation,%p\n", callParams.threadId, callParams.time, frameIndex,
+ allocation);
+ Flush();
+}
+
+void VmaRecorder::RecordMapMemory(uint32_t frameIndex,
+ VmaAllocation allocation)
+{
+ CallParams callParams;
+ GetBasicParams(callParams);
+
+ VmaMutexLock lock(m_FileMutex, m_UseMutex);
+ fprintf(m_File, "%u,%.3f,%u,vmaMapMemory,%p\n", callParams.threadId, callParams.time, frameIndex,
+ allocation);
+ Flush();
+}
+
+void VmaRecorder::RecordUnmapMemory(uint32_t frameIndex,
+ VmaAllocation allocation)
+{
+ CallParams callParams;
+ GetBasicParams(callParams);
+
+ VmaMutexLock lock(m_FileMutex, m_UseMutex);
+ fprintf(m_File, "%u,%.3f,%u,vmaUnmapMemory,%p\n", callParams.threadId, callParams.time, frameIndex,
+ allocation);
+ Flush();
+}
+
+void VmaRecorder::RecordFlushAllocation(uint32_t frameIndex,
+ VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size)
+{
+ CallParams callParams;
+ GetBasicParams(callParams);
+
+ VmaMutexLock lock(m_FileMutex, m_UseMutex);
+ fprintf(m_File, "%u,%.3f,%u,vmaFlushAllocation,%p,%llu,%llu\n", callParams.threadId, callParams.time, frameIndex,
+ allocation,
+ offset,
+ size);
+ Flush();
+}
+
+void VmaRecorder::RecordInvalidateAllocation(uint32_t frameIndex,
+ VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size)
+{
+ CallParams callParams;
+ GetBasicParams(callParams);
+
+ VmaMutexLock lock(m_FileMutex, m_UseMutex);
+ fprintf(m_File, "%u,%.3f,%u,vmaInvalidateAllocation,%p,%llu,%llu\n", callParams.threadId, callParams.time, frameIndex,
+ allocation,
+ offset,
+ size);
+ Flush();
+}
+
+void VmaRecorder::RecordCreateBuffer(uint32_t frameIndex,
+ const VkBufferCreateInfo& bufCreateInfo,
+ const VmaAllocationCreateInfo& allocCreateInfo,
+ VmaAllocation allocation)
+{
+ CallParams callParams;
+ GetBasicParams(callParams);
+
+ VmaMutexLock lock(m_FileMutex, m_UseMutex);
+ UserDataString userDataStr(allocCreateInfo.flags, allocCreateInfo.pUserData);
+ fprintf(m_File, "%u,%.3f,%u,vmaCreateBuffer,%u,%llu,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
+ bufCreateInfo.flags,
+ bufCreateInfo.size,
+ bufCreateInfo.usage,
+ bufCreateInfo.sharingMode,
+ allocCreateInfo.flags,
+ allocCreateInfo.usage,
+ allocCreateInfo.requiredFlags,
+ allocCreateInfo.preferredFlags,
+ allocCreateInfo.memoryTypeBits,
+ allocCreateInfo.pool,
+ allocation,
+ userDataStr.GetString());
+ Flush();
+}
+
+void VmaRecorder::RecordCreateImage(uint32_t frameIndex,
+ const VkImageCreateInfo& imageCreateInfo,
+ const VmaAllocationCreateInfo& allocCreateInfo,
+ VmaAllocation allocation)
+{
+ CallParams callParams;
+ GetBasicParams(callParams);
+
+ VmaMutexLock lock(m_FileMutex, m_UseMutex);
+ UserDataString userDataStr(allocCreateInfo.flags, allocCreateInfo.pUserData);
+ fprintf(m_File, "%u,%.3f,%u,vmaCreateImage,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
+ imageCreateInfo.flags,
+ imageCreateInfo.imageType,
+ imageCreateInfo.format,
+ imageCreateInfo.extent.width,
+ imageCreateInfo.extent.height,
+ imageCreateInfo.extent.depth,
+ imageCreateInfo.mipLevels,
+ imageCreateInfo.arrayLayers,
+ imageCreateInfo.samples,
+ imageCreateInfo.tiling,
+ imageCreateInfo.usage,
+ imageCreateInfo.sharingMode,
+ imageCreateInfo.initialLayout,
+ allocCreateInfo.flags,
+ allocCreateInfo.usage,
+ allocCreateInfo.requiredFlags,
+ allocCreateInfo.preferredFlags,
+ allocCreateInfo.memoryTypeBits,
+ allocCreateInfo.pool,
+ allocation,
+ userDataStr.GetString());
+ Flush();
+}
+
+void VmaRecorder::RecordDestroyBuffer(uint32_t frameIndex,
+ VmaAllocation allocation)
+{
+ CallParams callParams;
+ GetBasicParams(callParams);
+
+ VmaMutexLock lock(m_FileMutex, m_UseMutex);
+ fprintf(m_File, "%u,%.3f,%u,vmaDestroyBuffer,%p\n", callParams.threadId, callParams.time, frameIndex,
+ allocation);
+ Flush();
+}
+
+void VmaRecorder::RecordDestroyImage(uint32_t frameIndex,
+ VmaAllocation allocation)
+{
+ CallParams callParams;
+ GetBasicParams(callParams);
+
+ VmaMutexLock lock(m_FileMutex, m_UseMutex);
+ fprintf(m_File, "%u,%.3f,%u,vmaDestroyImage,%p\n", callParams.threadId, callParams.time, frameIndex,
+ allocation);
+ Flush();
+}
+
+void VmaRecorder::RecordTouchAllocation(uint32_t frameIndex,
+ VmaAllocation allocation)
+{
+ CallParams callParams;
+ GetBasicParams(callParams);
+
+ VmaMutexLock lock(m_FileMutex, m_UseMutex);
+ fprintf(m_File, "%u,%.3f,%u,vmaTouchAllocation,%p\n", callParams.threadId, callParams.time, frameIndex,
+ allocation);
+ Flush();
+}
+
+void VmaRecorder::RecordGetAllocationInfo(uint32_t frameIndex,
+ VmaAllocation allocation)
+{
+ CallParams callParams;
+ GetBasicParams(callParams);
+
+ VmaMutexLock lock(m_FileMutex, m_UseMutex);
+ fprintf(m_File, "%u,%.3f,%u,vmaGetAllocationInfo,%p\n", callParams.threadId, callParams.time, frameIndex,
+ allocation);
+ Flush();
+}
+
+void VmaRecorder::RecordMakePoolAllocationsLost(uint32_t frameIndex,
+ VmaPool pool)
+{
+ CallParams callParams;
+ GetBasicParams(callParams);
+
+ VmaMutexLock lock(m_FileMutex, m_UseMutex);
+ fprintf(m_File, "%u,%.3f,%u,vmaMakePoolAllocationsLost,%p\n", callParams.threadId, callParams.time, frameIndex,
+ pool);
+ Flush();
+}
+
+void VmaRecorder::RecordDefragmentationBegin(uint32_t frameIndex,
+ const VmaDefragmentationInfo2& info,
+ VmaDefragmentationContext ctx)
+{
+ CallParams callParams;
+ GetBasicParams(callParams);
+
+ VmaMutexLock lock(m_FileMutex, m_UseMutex);
+ fprintf(m_File, "%u,%.3f,%u,vmaDefragmentationBegin,%u,", callParams.threadId, callParams.time, frameIndex,
+ info.flags);
+ PrintPointerList(info.allocationCount, info.pAllocations);
+ fprintf(m_File, ",");
+ PrintPointerList(info.poolCount, info.pPools);
+ fprintf(m_File, ",%llu,%u,%llu,%u,%p,%p\n",
+ info.maxCpuBytesToMove,
+ info.maxCpuAllocationsToMove,
+ info.maxGpuBytesToMove,
+ info.maxGpuAllocationsToMove,
+ info.commandBuffer,
+ ctx);
+ Flush();
+}
+
+void VmaRecorder::RecordDefragmentationEnd(uint32_t frameIndex,
+ VmaDefragmentationContext ctx)
+{
+ CallParams callParams;
+ GetBasicParams(callParams);
+
+ VmaMutexLock lock(m_FileMutex, m_UseMutex);
+ fprintf(m_File, "%u,%.3f,%u,vmaDefragmentationEnd,%p\n", callParams.threadId, callParams.time, frameIndex,
+ ctx);
+ Flush();
+}
+
+VmaRecorder::UserDataString::UserDataString(VmaAllocationCreateFlags allocFlags, const void* pUserData)
+{
+ if(pUserData != VMA_NULL)
+ {
+ if((allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0)
+ {
+ m_Str = (const char*)pUserData;
+ }
+ else
+ {
+ sprintf_s(m_PtrStr, "%p", pUserData);
+ m_Str = m_PtrStr;
+ }
+ }
+ else
+ {
+ m_Str = "";
+ }
+}
+
+void VmaRecorder::WriteConfiguration(
+ const VkPhysicalDeviceProperties& devProps,
+ const VkPhysicalDeviceMemoryProperties& memProps,
+ bool dedicatedAllocationExtensionEnabled,
+ bool bindMemory2ExtensionEnabled)
+{
+ fprintf(m_File, "Config,Begin\n");
+
+ fprintf(m_File, "PhysicalDevice,apiVersion,%u\n", devProps.apiVersion);
+ fprintf(m_File, "PhysicalDevice,driverVersion,%u\n", devProps.driverVersion);
+ fprintf(m_File, "PhysicalDevice,vendorID,%u\n", devProps.vendorID);
+ fprintf(m_File, "PhysicalDevice,deviceID,%u\n", devProps.deviceID);
+ fprintf(m_File, "PhysicalDevice,deviceType,%u\n", devProps.deviceType);
+ fprintf(m_File, "PhysicalDevice,deviceName,%s\n", devProps.deviceName);
+
+ fprintf(m_File, "PhysicalDeviceLimits,maxMemoryAllocationCount,%u\n", devProps.limits.maxMemoryAllocationCount);
+ fprintf(m_File, "PhysicalDeviceLimits,bufferImageGranularity,%llu\n", devProps.limits.bufferImageGranularity);
+ fprintf(m_File, "PhysicalDeviceLimits,nonCoherentAtomSize,%llu\n", devProps.limits.nonCoherentAtomSize);
+
+ fprintf(m_File, "PhysicalDeviceMemory,HeapCount,%u\n", memProps.memoryHeapCount);
+ for(uint32_t i = 0; i < memProps.memoryHeapCount; ++i)
+ {
+ fprintf(m_File, "PhysicalDeviceMemory,Heap,%u,size,%llu\n", i, memProps.memoryHeaps[i].size);
+ fprintf(m_File, "PhysicalDeviceMemory,Heap,%u,flags,%u\n", i, memProps.memoryHeaps[i].flags);
+ }
+ fprintf(m_File, "PhysicalDeviceMemory,TypeCount,%u\n", memProps.memoryTypeCount);
+ for(uint32_t i = 0; i < memProps.memoryTypeCount; ++i)
+ {
+ fprintf(m_File, "PhysicalDeviceMemory,Type,%u,heapIndex,%u\n", i, memProps.memoryTypes[i].heapIndex);
+ fprintf(m_File, "PhysicalDeviceMemory,Type,%u,propertyFlags,%u\n", i, memProps.memoryTypes[i].propertyFlags);
+ }
+
+ fprintf(m_File, "Extension,VK_KHR_dedicated_allocation,%u\n", dedicatedAllocationExtensionEnabled ? 1 : 0);
+ fprintf(m_File, "Extension,VK_KHR_bind_memory2,%u\n", bindMemory2ExtensionEnabled ? 1 : 0);
+
+ fprintf(m_File, "Macro,VMA_DEBUG_ALWAYS_DEDICATED_MEMORY,%u\n", VMA_DEBUG_ALWAYS_DEDICATED_MEMORY ? 1 : 0);
+ fprintf(m_File, "Macro,VMA_DEBUG_ALIGNMENT,%llu\n", (VkDeviceSize)VMA_DEBUG_ALIGNMENT);
+ fprintf(m_File, "Macro,VMA_DEBUG_MARGIN,%llu\n", (VkDeviceSize)VMA_DEBUG_MARGIN);
+ fprintf(m_File, "Macro,VMA_DEBUG_INITIALIZE_ALLOCATIONS,%u\n", VMA_DEBUG_INITIALIZE_ALLOCATIONS ? 1 : 0);
+ fprintf(m_File, "Macro,VMA_DEBUG_DETECT_CORRUPTION,%u\n", VMA_DEBUG_DETECT_CORRUPTION ? 1 : 0);
+ fprintf(m_File, "Macro,VMA_DEBUG_GLOBAL_MUTEX,%u\n", VMA_DEBUG_GLOBAL_MUTEX ? 1 : 0);
+ fprintf(m_File, "Macro,VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY,%llu\n", (VkDeviceSize)VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY);
+ fprintf(m_File, "Macro,VMA_SMALL_HEAP_MAX_SIZE,%llu\n", (VkDeviceSize)VMA_SMALL_HEAP_MAX_SIZE);
+ fprintf(m_File, "Macro,VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE,%llu\n", (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE);
+
+ fprintf(m_File, "Config,End\n");
+}
+
+void VmaRecorder::GetBasicParams(CallParams& outParams)
+{
+ outParams.threadId = GetCurrentThreadId();
+
+ LARGE_INTEGER counter;
+ QueryPerformanceCounter(&counter);
+ outParams.time = (double)(counter.QuadPart - m_StartCounter) / (double)m_Freq;
+}
+
+void VmaRecorder::PrintPointerList(uint64_t count, const VmaAllocation* pItems)
+{
+ if(count)
+ {
+ fprintf(m_File, "%p", pItems[0]);
+ for(uint64_t i = 1; i < count; ++i)
+ {
+ fprintf(m_File, " %p", pItems[i]);
+ }
+ }
+}
+
+void VmaRecorder::Flush()
+{
+ if((m_Flags & VMA_RECORD_FLUSH_AFTER_CALL_BIT) != 0)
+ {
+ fflush(m_File);
+ }
+}
+
+#endif // #if VMA_RECORDING_ENABLED
+
+////////////////////////////////////////////////////////////////////////////////
+// VmaAllocationObjectAllocator
+
+VmaAllocationObjectAllocator::VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks) :
+ m_Allocator(pAllocationCallbacks, 1024)
+{
+}
+
+VmaAllocation VmaAllocationObjectAllocator::Allocate()
+{
+ VmaMutexLock mutexLock(m_Mutex);
+ return m_Allocator.Alloc();
+}
+
+void VmaAllocationObjectAllocator::Free(VmaAllocation hAlloc)
+{
+ VmaMutexLock mutexLock(m_Mutex);
+ m_Allocator.Free(hAlloc);
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// VmaAllocator_T
+
+VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo) :
+ m_UseMutex((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT) == 0),
+ m_UseKhrDedicatedAllocation((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0),
+ m_UseKhrBindMemory2((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0),
+ m_hDevice(pCreateInfo->device),
+ m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL),
+ m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ?
+ *pCreateInfo->pAllocationCallbacks : VmaEmptyAllocationCallbacks),
+ m_AllocationObjectAllocator(&m_AllocationCallbacks),
+ m_PreferredLargeHeapBlockSize(0),
+ m_PhysicalDevice(pCreateInfo->physicalDevice),
+ m_CurrentFrameIndex(0),
+ m_GpuDefragmentationMemoryTypeBits(UINT32_MAX),
+ m_Pools(VmaStlAllocator<VmaPool>(GetAllocationCallbacks())),
+ m_NextPoolId(0)
+#if VMA_RECORDING_ENABLED
+ ,m_pRecorder(VMA_NULL)
+#endif
+{
+ if(VMA_DEBUG_DETECT_CORRUPTION)
+ {
+ // Needs to be multiply of uint32_t size because we are going to write VMA_CORRUPTION_DETECTION_MAGIC_VALUE to it.
+ VMA_ASSERT(VMA_DEBUG_MARGIN % sizeof(uint32_t) == 0);
+ }
+
+ VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device);
+
+#if !(VMA_DEDICATED_ALLOCATION)
+ if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0)
+ {
+ VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT set but required extensions are disabled by preprocessor macros.");
+ }
+#endif
+#if !(VMA_BIND_MEMORY2)
+ if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0)
+ {
+ VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT set but required extension is disabled by preprocessor macros.");
+ }
+#endif
+
+ memset(&m_DeviceMemoryCallbacks, 0 ,sizeof(m_DeviceMemoryCallbacks));
+ memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties));
+ memset(&m_MemProps, 0, sizeof(m_MemProps));
+
+ memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors));
+ memset(&m_pDedicatedAllocations, 0, sizeof(m_pDedicatedAllocations));
+ memset(&m_VulkanFunctions, 0, sizeof(m_VulkanFunctions));
+
+ for(uint32_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i)
+ {
+ m_HeapSizeLimit[i] = VK_WHOLE_SIZE;
+ }
+
+ if(pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL)
+ {
+ m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate;
+ m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree;
+ }
+
+ ImportVulkanFunctions(pCreateInfo->pVulkanFunctions);
+
+ (*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties);
+ (*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps);
+
+ VMA_ASSERT(VmaIsPow2(VMA_DEBUG_ALIGNMENT));
+ VMA_ASSERT(VmaIsPow2(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY));
+ VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.bufferImageGranularity));
+ VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.nonCoherentAtomSize));
+
+ m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ?
+ pCreateInfo->preferredLargeHeapBlockSize : static_cast<VkDeviceSize>(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE);
+
+ if(pCreateInfo->pHeapSizeLimit != VMA_NULL)
+ {
+ for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex)
+ {
+ const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex];
+ if(limit != VK_WHOLE_SIZE)
+ {
+ m_HeapSizeLimit[heapIndex] = limit;
+ if(limit < m_MemProps.memoryHeaps[heapIndex].size)
+ {
+ m_MemProps.memoryHeaps[heapIndex].size = limit;
+ }
+ }
+ }
+ }
+
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+ {
+ const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex);
+
+ m_pBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)(
+ this,
+ VK_NULL_HANDLE, // hParentPool
+ memTypeIndex,
+ preferredBlockSize,
+ 0,
+ SIZE_MAX,
+ GetBufferImageGranularity(),
+ pCreateInfo->frameInUseCount,
+ false, // isCustomPool
+ false, // explicitBlockSize
+ false); // linearAlgorithm
+ // No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here,
+ // becase minBlockCount is 0.
+ m_pDedicatedAllocations[memTypeIndex] = vma_new(this, AllocationVectorType)(VmaStlAllocator<VmaAllocation>(GetAllocationCallbacks()));
+
+ }
+}
+
+VkResult VmaAllocator_T::Init(const VmaAllocatorCreateInfo* pCreateInfo)
+{
+ VkResult res = VK_SUCCESS;
+
+ if(pCreateInfo->pRecordSettings != VMA_NULL &&
+ !VmaStrIsEmpty(pCreateInfo->pRecordSettings->pFilePath))
+ {
+#if VMA_RECORDING_ENABLED
+ m_pRecorder = vma_new(this, VmaRecorder)();
+ res = m_pRecorder->Init(*pCreateInfo->pRecordSettings, m_UseMutex);
+ if(res != VK_SUCCESS)
+ {
+ return res;
+ }
+ m_pRecorder->WriteConfiguration(
+ m_PhysicalDeviceProperties,
+ m_MemProps,
+ m_UseKhrDedicatedAllocation,
+ m_UseKhrBindMemory2);
+ m_pRecorder->RecordCreateAllocator(GetCurrentFrameIndex());
+#else
+ VMA_ASSERT(0 && "VmaAllocatorCreateInfo::pRecordSettings used, but not supported due to VMA_RECORDING_ENABLED not defined to 1.");
+ return VK_ERROR_FEATURE_NOT_PRESENT;
+#endif
+ }
+
+ return res;
+}
+
+VmaAllocator_T::~VmaAllocator_T()
+{
+#if VMA_RECORDING_ENABLED
+ if(m_pRecorder != VMA_NULL)
+ {
+ m_pRecorder->RecordDestroyAllocator(GetCurrentFrameIndex());
+ vma_delete(this, m_pRecorder);
+ }
+#endif
+
+ VMA_ASSERT(m_Pools.empty());
+
+ for(size_t i = GetMemoryTypeCount(); i--; )
+ {
+ if(m_pDedicatedAllocations[i] != VMA_NULL && !m_pDedicatedAllocations[i]->empty())
+ {
+ VMA_ASSERT(0 && "Unfreed dedicated allocations found.");
+ }
+
+ vma_delete(this, m_pDedicatedAllocations[i]);
+ vma_delete(this, m_pBlockVectors[i]);
+ }
+}
+
+void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions)
+{
+#if VMA_STATIC_VULKAN_FUNCTIONS == 1
+ m_VulkanFunctions.vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)vkGetPhysicalDeviceProperties;
+ m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)vkGetPhysicalDeviceMemoryProperties;
+ m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory;
+ m_VulkanFunctions.vkFreeMemory = (PFN_vkFreeMemory)vkFreeMemory;
+ m_VulkanFunctions.vkMapMemory = (PFN_vkMapMemory)vkMapMemory;
+ m_VulkanFunctions.vkUnmapMemory = (PFN_vkUnmapMemory)vkUnmapMemory;
+ m_VulkanFunctions.vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)vkFlushMappedMemoryRanges;
+ m_VulkanFunctions.vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)vkInvalidateMappedMemoryRanges;
+ m_VulkanFunctions.vkBindBufferMemory = (PFN_vkBindBufferMemory)vkBindBufferMemory;
+ m_VulkanFunctions.vkBindImageMemory = (PFN_vkBindImageMemory)vkBindImageMemory;
+ m_VulkanFunctions.vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)vkGetBufferMemoryRequirements;
+ m_VulkanFunctions.vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)vkGetImageMemoryRequirements;
+ m_VulkanFunctions.vkCreateBuffer = (PFN_vkCreateBuffer)vkCreateBuffer;
+ m_VulkanFunctions.vkDestroyBuffer = (PFN_vkDestroyBuffer)vkDestroyBuffer;
+ m_VulkanFunctions.vkCreateImage = (PFN_vkCreateImage)vkCreateImage;
+ m_VulkanFunctions.vkDestroyImage = (PFN_vkDestroyImage)vkDestroyImage;
+ m_VulkanFunctions.vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)vkCmdCopyBuffer;
+#if VMA_DEDICATED_ALLOCATION
+ if(m_UseKhrDedicatedAllocation)
+ {
+ m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR =
+ (PFN_vkGetBufferMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetBufferMemoryRequirements2KHR");
+ m_VulkanFunctions.vkGetImageMemoryRequirements2KHR =
+ (PFN_vkGetImageMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetImageMemoryRequirements2KHR");
+ }
+#endif // #if VMA_DEDICATED_ALLOCATION
+#if VMA_BIND_MEMORY2
+ if(m_UseKhrBindMemory2)
+ {
+ m_VulkanFunctions.vkBindBufferMemory2KHR =
+ (PFN_vkBindBufferMemory2KHR)vkGetDeviceProcAddr(m_hDevice, "vkBindBufferMemory2KHR");
+ m_VulkanFunctions.vkBindImageMemory2KHR =
+ (PFN_vkBindImageMemory2KHR)vkGetDeviceProcAddr(m_hDevice, "vkBindImageMemory2KHR");
+ }
+#endif // #if VMA_BIND_MEMORY2
+#endif // #if VMA_STATIC_VULKAN_FUNCTIONS == 1
+
+#define VMA_COPY_IF_NOT_NULL(funcName) \
+ if(pVulkanFunctions->funcName != VMA_NULL) m_VulkanFunctions.funcName = pVulkanFunctions->funcName;
+
+ if(pVulkanFunctions != VMA_NULL)
+ {
+ VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceProperties);
+ VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties);
+ VMA_COPY_IF_NOT_NULL(vkAllocateMemory);
+ VMA_COPY_IF_NOT_NULL(vkFreeMemory);
+ VMA_COPY_IF_NOT_NULL(vkMapMemory);
+ VMA_COPY_IF_NOT_NULL(vkUnmapMemory);
+ VMA_COPY_IF_NOT_NULL(vkFlushMappedMemoryRanges);
+ VMA_COPY_IF_NOT_NULL(vkInvalidateMappedMemoryRanges);
+ VMA_COPY_IF_NOT_NULL(vkBindBufferMemory);
+ VMA_COPY_IF_NOT_NULL(vkBindImageMemory);
+ VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements);
+ VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements);
+ VMA_COPY_IF_NOT_NULL(vkCreateBuffer);
+ VMA_COPY_IF_NOT_NULL(vkDestroyBuffer);
+ VMA_COPY_IF_NOT_NULL(vkCreateImage);
+ VMA_COPY_IF_NOT_NULL(vkDestroyImage);
+ VMA_COPY_IF_NOT_NULL(vkCmdCopyBuffer);
+#if VMA_DEDICATED_ALLOCATION
+ VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements2KHR);
+ VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements2KHR);
+#endif
+#if VMA_BIND_MEMORY2
+ VMA_COPY_IF_NOT_NULL(vkBindBufferMemory2KHR);
+ VMA_COPY_IF_NOT_NULL(vkBindImageMemory2KHR);
+#endif
+ }
+
+#undef VMA_COPY_IF_NOT_NULL
+
+ // If these asserts are hit, you must either #define VMA_STATIC_VULKAN_FUNCTIONS 1
+ // or pass valid pointers as VmaAllocatorCreateInfo::pVulkanFunctions.
+ VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkFlushMappedMemoryRanges != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkInvalidateMappedMemoryRanges != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkCmdCopyBuffer != VMA_NULL);
+#if VMA_DEDICATED_ALLOCATION
+ if(m_UseKhrDedicatedAllocation)
+ {
+ VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements2KHR != VMA_NULL);
+ }
+#endif
+#if VMA_BIND_MEMORY2
+ if(m_UseKhrBindMemory2)
+ {
+ VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL);
+ }
+#endif
+}
+
+VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex)
+{
+ const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
+ const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size;
+ const bool isSmallHeap = heapSize <= VMA_SMALL_HEAP_MAX_SIZE;
+ return isSmallHeap ? (heapSize / 8) : m_PreferredLargeHeapBlockSize;
+}
+
+VkResult VmaAllocator_T::AllocateMemoryOfType(
+ VkDeviceSize size,
+ VkDeviceSize alignment,
+ bool dedicatedAllocation,
+ VkBuffer dedicatedBuffer,
+ VkImage dedicatedImage,
+ const VmaAllocationCreateInfo& createInfo,
+ uint32_t memTypeIndex,
+ VmaSuballocationType suballocType,
+ size_t allocationCount,
+ VmaAllocation* pAllocations)
+{
+ VMA_ASSERT(pAllocations != VMA_NULL);
+ VMA_DEBUG_LOG(" AllocateMemory: MemoryTypeIndex=%u, AllocationCount=%zu, Size=%llu", memTypeIndex, allocationCount, size);
+
+ VmaAllocationCreateInfo finalCreateInfo = createInfo;
+
+ // If memory type is not HOST_VISIBLE, disable MAPPED.
+ if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&
+ (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
+ {
+ finalCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT;
+ }
+
+ VmaBlockVector* const blockVector = m_pBlockVectors[memTypeIndex];
+ VMA_ASSERT(blockVector);
+
+ const VkDeviceSize preferredBlockSize = blockVector->GetPreferredBlockSize();
+ bool preferDedicatedMemory =
+ VMA_DEBUG_ALWAYS_DEDICATED_MEMORY ||
+ dedicatedAllocation ||
+ // Heuristics: Allocate dedicated memory if requested size if greater than half of preferred block size.
+ size > preferredBlockSize / 2;
+
+ if(preferDedicatedMemory &&
+ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 &&
+ finalCreateInfo.pool == VK_NULL_HANDLE)
+ {
+ finalCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
+ }
+
+ if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0)
+ {
+ if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
+ {
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ }
+ else
+ {
+ return AllocateDedicatedMemory(
+ size,
+ suballocType,
+ memTypeIndex,
+ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
+ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
+ finalCreateInfo.pUserData,
+ dedicatedBuffer,
+ dedicatedImage,
+ allocationCount,
+ pAllocations);
+ }
+ }
+ else
+ {
+ VkResult res = blockVector->Allocate(
+ m_CurrentFrameIndex.load(),
+ size,
+ alignment,
+ finalCreateInfo,
+ suballocType,
+ allocationCount,
+ pAllocations);
+ if(res == VK_SUCCESS)
+ {
+ return res;
+ }
+
+ // 5. Try dedicated memory.
+ if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
+ {
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ }
+ else
+ {
+ res = AllocateDedicatedMemory(
+ size,
+ suballocType,
+ memTypeIndex,
+ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
+ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
+ finalCreateInfo.pUserData,
+ dedicatedBuffer,
+ dedicatedImage,
+ allocationCount,
+ pAllocations);
+ if(res == VK_SUCCESS)
+ {
+ // Succeeded: AllocateDedicatedMemory function already filld pMemory, nothing more to do here.
+ VMA_DEBUG_LOG(" Allocated as DedicatedMemory");
+ return VK_SUCCESS;
+ }
+ else
+ {
+ // Everything failed: Return error code.
+ VMA_DEBUG_LOG(" vkAllocateMemory FAILED");
+ return res;
+ }
+ }
+ }
+}
+
+VkResult VmaAllocator_T::AllocateDedicatedMemory(
+ VkDeviceSize size,
+ VmaSuballocationType suballocType,
+ uint32_t memTypeIndex,
+ bool map,
+ bool isUserDataString,
+ void* pUserData,
+ VkBuffer dedicatedBuffer,
+ VkImage dedicatedImage,
+ size_t allocationCount,
+ VmaAllocation* pAllocations)
+{
+ VMA_ASSERT(allocationCount > 0 && pAllocations);
+
+ VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
+ allocInfo.memoryTypeIndex = memTypeIndex;
+ allocInfo.allocationSize = size;
+
+#if VMA_DEDICATED_ALLOCATION
+ VkMemoryDedicatedAllocateInfoKHR dedicatedAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR };
+ if(m_UseKhrDedicatedAllocation)
+ {
+ if(dedicatedBuffer != VK_NULL_HANDLE)
+ {
+ VMA_ASSERT(dedicatedImage == VK_NULL_HANDLE);
+ dedicatedAllocInfo.buffer = dedicatedBuffer;
+ allocInfo.pNext = &dedicatedAllocInfo;
+ }
+ else if(dedicatedImage != VK_NULL_HANDLE)
+ {
+ dedicatedAllocInfo.image = dedicatedImage;
+ allocInfo.pNext = &dedicatedAllocInfo;
+ }
+ }
+#endif // #if VMA_DEDICATED_ALLOCATION
+
+ size_t allocIndex;
+ VkResult res = VK_SUCCESS;
+ for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
+ {
+ res = AllocateDedicatedMemoryPage(
+ size,
+ suballocType,
+ memTypeIndex,
+ allocInfo,
+ map,
+ isUserDataString,
+ pUserData,
+ pAllocations + allocIndex);
+ if(res != VK_SUCCESS)
+ {
+ break;
+ }
+ }
+
+ if(res == VK_SUCCESS)
+ {
+ // Register them in m_pDedicatedAllocations.
+ {
+ VmaMutexLockWrite lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
+ AllocationVectorType* pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex];
+ VMA_ASSERT(pDedicatedAllocations);
+ for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
+ {
+ VmaVectorInsertSorted<VmaPointerLess>(*pDedicatedAllocations, pAllocations[allocIndex]);
+ }
+ }
+
+ VMA_DEBUG_LOG(" Allocated DedicatedMemory Count=%zu, MemoryTypeIndex=#%u", allocationCount, memTypeIndex);
+ }
+ else
+ {
+ // Free all already created allocations.
+ while(allocIndex--)
+ {
+ VmaAllocation currAlloc = pAllocations[allocIndex];
+ VkDeviceMemory hMemory = currAlloc->GetMemory();
+
+ /*
+ There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory
+ before vkFreeMemory.
+
+ if(currAlloc->GetMappedData() != VMA_NULL)
+ {
+ (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory);
+ }
+ */
+
+ FreeVulkanMemory(memTypeIndex, currAlloc->GetSize(), hMemory);
+
+ currAlloc->SetUserData(this, VMA_NULL);
+ currAlloc->Dtor();
+ m_AllocationObjectAllocator.Free(currAlloc);
+ }
+
+ memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
+ }
+
+ return res;
+}
+
+VkResult VmaAllocator_T::AllocateDedicatedMemoryPage(
+ VkDeviceSize size,
+ VmaSuballocationType suballocType,
+ uint32_t memTypeIndex,
+ const VkMemoryAllocateInfo& allocInfo,
+ bool map,
+ bool isUserDataString,
+ void* pUserData,
+ VmaAllocation* pAllocation)
+{
+ VkDeviceMemory hMemory = VK_NULL_HANDLE;
+ VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory);
+ if(res < 0)
+ {
+ VMA_DEBUG_LOG(" vkAllocateMemory FAILED");
+ return res;
+ }
+
+ void* pMappedData = VMA_NULL;
+ if(map)
+ {
+ res = (*m_VulkanFunctions.vkMapMemory)(
+ m_hDevice,
+ hMemory,
+ 0,
+ VK_WHOLE_SIZE,
+ 0,
+ &pMappedData);
+ if(res < 0)
+ {
+ VMA_DEBUG_LOG(" vkMapMemory FAILED");
+ FreeVulkanMemory(memTypeIndex, size, hMemory);
+ return res;
+ }
+ }
+
+ *pAllocation = m_AllocationObjectAllocator.Allocate();
+ (*pAllocation)->Ctor(m_CurrentFrameIndex.load(), isUserDataString);
+ (*pAllocation)->InitDedicatedAllocation(memTypeIndex, hMemory, suballocType, pMappedData, size);
+ (*pAllocation)->SetUserData(this, pUserData);
+ if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
+ {
+ FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
+ }
+
+ return VK_SUCCESS;
+}
+
+void VmaAllocator_T::GetBufferMemoryRequirements(
+ VkBuffer hBuffer,
+ VkMemoryRequirements& memReq,
+ bool& requiresDedicatedAllocation,
+ bool& prefersDedicatedAllocation) const
+{
+#if VMA_DEDICATED_ALLOCATION
+ if(m_UseKhrDedicatedAllocation)
+ {
+ VkBufferMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR };
+ memReqInfo.buffer = hBuffer;
+
+ VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };
+
+ VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };
+ memReq2.pNext = &memDedicatedReq;
+
+ (*m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);
+
+ memReq = memReq2.memoryRequirements;
+ requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);
+ prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE);
+ }
+ else
+#endif // #if VMA_DEDICATED_ALLOCATION
+ {
+ (*m_VulkanFunctions.vkGetBufferMemoryRequirements)(m_hDevice, hBuffer, &memReq);
+ requiresDedicatedAllocation = false;
+ prefersDedicatedAllocation = false;
+ }
+}
+
+void VmaAllocator_T::GetImageMemoryRequirements(
+ VkImage hImage,
+ VkMemoryRequirements& memReq,
+ bool& requiresDedicatedAllocation,
+ bool& prefersDedicatedAllocation) const
+{
+#if VMA_DEDICATED_ALLOCATION
+ if(m_UseKhrDedicatedAllocation)
+ {
+ VkImageMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR };
+ memReqInfo.image = hImage;
+
+ VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };
+
+ VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };
+ memReq2.pNext = &memDedicatedReq;
+
+ (*m_VulkanFunctions.vkGetImageMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);
+
+ memReq = memReq2.memoryRequirements;
+ requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);
+ prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE);
+ }
+ else
+#endif // #if VMA_DEDICATED_ALLOCATION
+ {
+ (*m_VulkanFunctions.vkGetImageMemoryRequirements)(m_hDevice, hImage, &memReq);
+ requiresDedicatedAllocation = false;
+ prefersDedicatedAllocation = false;
+ }
+}
+
+VkResult VmaAllocator_T::AllocateMemory(
+ const VkMemoryRequirements& vkMemReq,
+ bool requiresDedicatedAllocation,
+ bool prefersDedicatedAllocation,
+ VkBuffer dedicatedBuffer,
+ VkImage dedicatedImage,
+ const VmaAllocationCreateInfo& createInfo,
+ VmaSuballocationType suballocType,
+ size_t allocationCount,
+ VmaAllocation* pAllocations)
+{
+ memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
+
+ VMA_ASSERT(VmaIsPow2(vkMemReq.alignment));
+
+ if(vkMemReq.size == 0)
+ {
+ return VK_ERROR_VALIDATION_FAILED_EXT;
+ }
+ if((createInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 &&
+ (createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
+ {
+ VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense.");
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ }
+ if((createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&
+ (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0)
+ {
+ VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_MAPPED_BIT together with VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT is invalid.");
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ }
+ if(requiresDedicatedAllocation)
+ {
+ if((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
+ {
+ VMA_ASSERT(0 && "VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT specified while dedicated allocation is required.");
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ }
+ if(createInfo.pool != VK_NULL_HANDLE)
+ {
+ VMA_ASSERT(0 && "Pool specified while dedicated allocation is required.");
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ }
+ }
+ if((createInfo.pool != VK_NULL_HANDLE) &&
+ ((createInfo.flags & (VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT)) != 0))
+ {
+ VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT when pool != null is invalid.");
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ }
+
+ if(createInfo.pool != VK_NULL_HANDLE)
+ {
+ const VkDeviceSize alignmentForPool = VMA_MAX(
+ vkMemReq.alignment,
+ GetMemoryTypeMinAlignment(createInfo.pool->m_BlockVector.GetMemoryTypeIndex()));
+
+ VmaAllocationCreateInfo createInfoForPool = createInfo;
+ // If memory type is not HOST_VISIBLE, disable MAPPED.
+ if((createInfoForPool.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&
+ (m_MemProps.memoryTypes[createInfo.pool->m_BlockVector.GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
+ {
+ createInfoForPool.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT;
+ }
+
+ return createInfo.pool->m_BlockVector.Allocate(
+ m_CurrentFrameIndex.load(),
+ vkMemReq.size,
+ alignmentForPool,
+ createInfoForPool,
+ suballocType,
+ allocationCount,
+ pAllocations);
+ }
+ else
+ {
+ // Bit mask of memory Vulkan types acceptable for this allocation.
+ uint32_t memoryTypeBits = vkMemReq.memoryTypeBits;
+ uint32_t memTypeIndex = UINT32_MAX;
+ VkResult res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex);
+ if(res == VK_SUCCESS)
+ {
+ VkDeviceSize alignmentForMemType = VMA_MAX(
+ vkMemReq.alignment,
+ GetMemoryTypeMinAlignment(memTypeIndex));
+
+ res = AllocateMemoryOfType(
+ vkMemReq.size,
+ alignmentForMemType,
+ requiresDedicatedAllocation || prefersDedicatedAllocation,
+ dedicatedBuffer,
+ dedicatedImage,
+ createInfo,
+ memTypeIndex,
+ suballocType,
+ allocationCount,
+ pAllocations);
+ // Succeeded on first try.
+ if(res == VK_SUCCESS)
+ {
+ return res;
+ }
+ // Allocation from this memory type failed. Try other compatible memory types.
+ else
+ {
+ for(;;)
+ {
+ // Remove old memTypeIndex from list of possibilities.
+ memoryTypeBits &= ~(1u << memTypeIndex);
+ // Find alternative memTypeIndex.
+ res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex);
+ if(res == VK_SUCCESS)
+ {
+ alignmentForMemType = VMA_MAX(
+ vkMemReq.alignment,
+ GetMemoryTypeMinAlignment(memTypeIndex));
+
+ res = AllocateMemoryOfType(
+ vkMemReq.size,
+ alignmentForMemType,
+ requiresDedicatedAllocation || prefersDedicatedAllocation,
+ dedicatedBuffer,
+ dedicatedImage,
+ createInfo,
+ memTypeIndex,
+ suballocType,
+ allocationCount,
+ pAllocations);
+ // Allocation from this alternative memory type succeeded.
+ if(res == VK_SUCCESS)
+ {
+ return res;
+ }
+ // else: Allocation from this memory type failed. Try next one - next loop iteration.
+ }
+ // No other matching memory type index could be found.
+ else
+ {
+ // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once.
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ }
+ }
+ }
+ }
+ // Can't find any single memory type maching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT.
+ else
+ return res;
+ }
+}
+
+void VmaAllocator_T::FreeMemory(
+ size_t allocationCount,
+ const VmaAllocation* pAllocations)
+{
+ VMA_ASSERT(pAllocations);
+
+ for(size_t allocIndex = allocationCount; allocIndex--; )
+ {
+ VmaAllocation allocation = pAllocations[allocIndex];
+
+ if(allocation != VK_NULL_HANDLE)
+ {
+ if(TouchAllocation(allocation))
+ {
+ if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
+ {
+ FillAllocation(allocation, VMA_ALLOCATION_FILL_PATTERN_DESTROYED);
+ }
+
+ switch(allocation->GetType())
+ {
+ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+ {
+ VmaBlockVector* pBlockVector = VMA_NULL;
+ VmaPool hPool = allocation->GetBlock()->GetParentPool();
+ if(hPool != VK_NULL_HANDLE)
+ {
+ pBlockVector = &hPool->m_BlockVector;
+ }
+ else
+ {
+ const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
+ pBlockVector = m_pBlockVectors[memTypeIndex];
+ }
+ pBlockVector->Free(allocation);
+ }
+ break;
+ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+ FreeDedicatedMemory(allocation);
+ break;
+ default:
+ VMA_ASSERT(0);
+ }
+ }
+
+ allocation->SetUserData(this, VMA_NULL);
+ allocation->Dtor();
+ m_AllocationObjectAllocator.Free(allocation);
+ }
+ }
+}
+
+VkResult VmaAllocator_T::ResizeAllocation(
+ const VmaAllocation alloc,
+ VkDeviceSize newSize)
+{
+ // This function is deprecated and so it does nothing. It's left for backward compatibility.
+ if(newSize == 0 || alloc->GetLastUseFrameIndex() == VMA_FRAME_INDEX_LOST)
+ {
+ return VK_ERROR_VALIDATION_FAILED_EXT;
+ }
+ if(newSize == alloc->GetSize())
+ {
+ return VK_SUCCESS;
+ }
+ return VK_ERROR_OUT_OF_POOL_MEMORY;
+}
+
+void VmaAllocator_T::CalculateStats(VmaStats* pStats)
+{
+ // Initialize.
+ InitStatInfo(pStats->total);
+ for(size_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i)
+ InitStatInfo(pStats->memoryType[i]);
+ for(size_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i)
+ InitStatInfo(pStats->memoryHeap[i]);
+
+ // Process default pools.
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+ {
+ VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex];
+ VMA_ASSERT(pBlockVector);
+ pBlockVector->AddStats(pStats);
+ }
+
+ // Process custom pools.
+ {
+ VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
+ for(size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex)
+ {
+ m_Pools[poolIndex]->m_BlockVector.AddStats(pStats);
+ }
+ }
+
+ // Process dedicated allocations.
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+ {
+ const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
+ VmaMutexLockRead dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
+ AllocationVectorType* const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex];
+ VMA_ASSERT(pDedicatedAllocVector);
+ for(size_t allocIndex = 0, allocCount = pDedicatedAllocVector->size(); allocIndex < allocCount; ++allocIndex)
+ {
+ VmaStatInfo allocationStatInfo;
+ (*pDedicatedAllocVector)[allocIndex]->DedicatedAllocCalcStatsInfo(allocationStatInfo);
+ VmaAddStatInfo(pStats->total, allocationStatInfo);
+ VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo);
+ VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo);
+ }
+ }
+
+ // Postprocess.
+ VmaPostprocessCalcStatInfo(pStats->total);
+ for(size_t i = 0; i < GetMemoryTypeCount(); ++i)
+ VmaPostprocessCalcStatInfo(pStats->memoryType[i]);
+ for(size_t i = 0; i < GetMemoryHeapCount(); ++i)
+ VmaPostprocessCalcStatInfo(pStats->memoryHeap[i]);
+}
+
+static const uint32_t VMA_VENDOR_ID_AMD = 4098;
+
+VkResult VmaAllocator_T::DefragmentationBegin(
+ const VmaDefragmentationInfo2& info,
+ VmaDefragmentationStats* pStats,
+ VmaDefragmentationContext* pContext)
+{
+ if(info.pAllocationsChanged != VMA_NULL)
+ {
+ memset(info.pAllocationsChanged, 0, info.allocationCount * sizeof(VkBool32));
+ }
+
+ *pContext = vma_new(this, VmaDefragmentationContext_T)(
+ this, m_CurrentFrameIndex.load(), info.flags, pStats);
+
+ (*pContext)->AddPools(info.poolCount, info.pPools);
+ (*pContext)->AddAllocations(
+ info.allocationCount, info.pAllocations, info.pAllocationsChanged);
+
+ VkResult res = (*pContext)->Defragment(
+ info.maxCpuBytesToMove, info.maxCpuAllocationsToMove,
+ info.maxGpuBytesToMove, info.maxGpuAllocationsToMove,
+ info.commandBuffer, pStats);
+
+ if(res != VK_NOT_READY)
+ {
+ vma_delete(this, *pContext);
+ *pContext = VMA_NULL;
+ }
+
+ return res;
+}
+
+VkResult VmaAllocator_T::DefragmentationEnd(
+ VmaDefragmentationContext context)
+{
+ vma_delete(this, context);
+ return VK_SUCCESS;
+}
+
+void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo)
+{
+ if(hAllocation->CanBecomeLost())
+ {
+ /*
+ Warning: This is a carefully designed algorithm.
+ Do not modify unless you really know what you're doing :)
+ */
+ const uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();
+ uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();
+ for(;;)
+ {
+ if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)
+ {
+ pAllocationInfo->memoryType = UINT32_MAX;
+ pAllocationInfo->deviceMemory = VK_NULL_HANDLE;
+ pAllocationInfo->offset = 0;
+ pAllocationInfo->size = hAllocation->GetSize();
+ pAllocationInfo->pMappedData = VMA_NULL;
+ pAllocationInfo->pUserData = hAllocation->GetUserData();
+ return;
+ }
+ else if(localLastUseFrameIndex == localCurrFrameIndex)
+ {
+ pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();
+ pAllocationInfo->deviceMemory = hAllocation->GetMemory();
+ pAllocationInfo->offset = hAllocation->GetOffset();
+ pAllocationInfo->size = hAllocation->GetSize();
+ pAllocationInfo->pMappedData = VMA_NULL;
+ pAllocationInfo->pUserData = hAllocation->GetUserData();
+ return;
+ }
+ else // Last use time earlier than current time.
+ {
+ if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))
+ {
+ localLastUseFrameIndex = localCurrFrameIndex;
+ }
+ }
+ }
+ }
+ else
+ {
+#if VMA_STATS_STRING_ENABLED
+ uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();
+ uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();
+ for(;;)
+ {
+ VMA_ASSERT(localLastUseFrameIndex != VMA_FRAME_INDEX_LOST);
+ if(localLastUseFrameIndex == localCurrFrameIndex)
+ {
+ break;
+ }
+ else // Last use time earlier than current time.
+ {
+ if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))
+ {
+ localLastUseFrameIndex = localCurrFrameIndex;
+ }
+ }
+ }
+#endif
+
+ pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();
+ pAllocationInfo->deviceMemory = hAllocation->GetMemory();
+ pAllocationInfo->offset = hAllocation->GetOffset();
+ pAllocationInfo->size = hAllocation->GetSize();
+ pAllocationInfo->pMappedData = hAllocation->GetMappedData();
+ pAllocationInfo->pUserData = hAllocation->GetUserData();
+ }
+}
+
+bool VmaAllocator_T::TouchAllocation(VmaAllocation hAllocation)
+{
+ // This is a stripped-down version of VmaAllocator_T::GetAllocationInfo.
+ if(hAllocation->CanBecomeLost())
+ {
+ uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();
+ uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();
+ for(;;)
+ {
+ if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)
+ {
+ return false;
+ }
+ else if(localLastUseFrameIndex == localCurrFrameIndex)
+ {
+ return true;
+ }
+ else // Last use time earlier than current time.
+ {
+ if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))
+ {
+ localLastUseFrameIndex = localCurrFrameIndex;
+ }
+ }
+ }
+ }
+ else
+ {
+#if VMA_STATS_STRING_ENABLED
+ uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();
+ uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();
+ for(;;)
+ {
+ VMA_ASSERT(localLastUseFrameIndex != VMA_FRAME_INDEX_LOST);
+ if(localLastUseFrameIndex == localCurrFrameIndex)
+ {
+ break;
+ }
+ else // Last use time earlier than current time.
+ {
+ if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))
+ {
+ localLastUseFrameIndex = localCurrFrameIndex;
+ }
+ }
+ }
+#endif
+
+ return true;
+ }
+}
+
+VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool)
+{
+ VMA_DEBUG_LOG(" CreatePool: MemoryTypeIndex=%u, flags=%u", pCreateInfo->memoryTypeIndex, pCreateInfo->flags);
+
+ VmaPoolCreateInfo newCreateInfo = *pCreateInfo;
+
+ if(newCreateInfo.maxBlockCount == 0)
+ {
+ newCreateInfo.maxBlockCount = SIZE_MAX;
+ }
+ if(newCreateInfo.minBlockCount > newCreateInfo.maxBlockCount)
+ {
+ return VK_ERROR_INITIALIZATION_FAILED;
+ }
+
+ const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex);
+
+ *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo, preferredBlockSize);
+
+ VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks();
+ if(res != VK_SUCCESS)
+ {
+ vma_delete(this, *pPool);
+ *pPool = VMA_NULL;
+ return res;
+ }
+
+ // Add to m_Pools.
+ {
+ VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex);
+ (*pPool)->SetId(m_NextPoolId++);
+ VmaVectorInsertSorted<VmaPointerLess>(m_Pools, *pPool);
+ }
+
+ return VK_SUCCESS;
+}
+
+void VmaAllocator_T::DestroyPool(VmaPool pool)
+{
+ // Remove from m_Pools.
+ {
+ VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex);
+ bool success = VmaVectorRemoveSorted<VmaPointerLess>(m_Pools, pool);
+ VMA_ASSERT(success && "Pool not found in Allocator.");
+ }
+
+ vma_delete(this, pool);
+}
+
+void VmaAllocator_T::GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats)
+{
+ pool->m_BlockVector.GetPoolStats(pPoolStats);
+}
+
+void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex)
+{
+ m_CurrentFrameIndex.store(frameIndex);
+}
+
+void VmaAllocator_T::MakePoolAllocationsLost(
+ VmaPool hPool,
+ size_t* pLostAllocationCount)
+{
+ hPool->m_BlockVector.MakePoolAllocationsLost(
+ m_CurrentFrameIndex.load(),
+ pLostAllocationCount);
+}
+
+VkResult VmaAllocator_T::CheckPoolCorruption(VmaPool hPool)
+{
+ return hPool->m_BlockVector.CheckCorruption();
+}
+
+VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits)
+{
+ VkResult finalRes = VK_ERROR_FEATURE_NOT_PRESENT;
+
+ // Process default pools.
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+ {
+ if(((1u << memTypeIndex) & memoryTypeBits) != 0)
+ {
+ VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex];
+ VMA_ASSERT(pBlockVector);
+ VkResult localRes = pBlockVector->CheckCorruption();
+ switch(localRes)
+ {
+ case VK_ERROR_FEATURE_NOT_PRESENT:
+ break;
+ case VK_SUCCESS:
+ finalRes = VK_SUCCESS;
+ break;
+ default:
+ return localRes;
+ }
+ }
+ }
+
+ // Process custom pools.
+ {
+ VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
+ for(size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex)
+ {
+ if(((1u << m_Pools[poolIndex]->m_BlockVector.GetMemoryTypeIndex()) & memoryTypeBits) != 0)
+ {
+ VkResult localRes = m_Pools[poolIndex]->m_BlockVector.CheckCorruption();
+ switch(localRes)
+ {
+ case VK_ERROR_FEATURE_NOT_PRESENT:
+ break;
+ case VK_SUCCESS:
+ finalRes = VK_SUCCESS;
+ break;
+ default:
+ return localRes;
+ }
+ }
+ }
+ }
+
+ return finalRes;
+}
+
+void VmaAllocator_T::CreateLostAllocation(VmaAllocation* pAllocation)
+{
+ *pAllocation = m_AllocationObjectAllocator.Allocate();
+ (*pAllocation)->Ctor(VMA_FRAME_INDEX_LOST, false);
+ (*pAllocation)->InitLost();
+}
+
+VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory)
+{
+ const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex);
+
+ VkResult res;
+ if(m_HeapSizeLimit[heapIndex] != VK_WHOLE_SIZE)
+ {
+ VmaMutexLock lock(m_HeapSizeLimitMutex, m_UseMutex);
+ if(m_HeapSizeLimit[heapIndex] >= pAllocateInfo->allocationSize)
+ {
+ res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory);
+ if(res == VK_SUCCESS)
+ {
+ m_HeapSizeLimit[heapIndex] -= pAllocateInfo->allocationSize;
+ }
+ }
+ else
+ {
+ res = VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ }
+ }
+ else
+ {
+ res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory);
+ }
+
+ if(res == VK_SUCCESS && m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL)
+ {
+ (*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize);
+ }
+
+ return res;
+}
+
+void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory)
+{
+ if(m_DeviceMemoryCallbacks.pfnFree != VMA_NULL)
+ {
+ (*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size);
+ }
+
+ (*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks());
+
+ const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memoryType);
+ if(m_HeapSizeLimit[heapIndex] != VK_WHOLE_SIZE)
+ {
+ VmaMutexLock lock(m_HeapSizeLimitMutex, m_UseMutex);
+ m_HeapSizeLimit[heapIndex] += size;
+ }
+}
+
+VkResult VmaAllocator_T::BindVulkanBuffer(
+ VkDeviceMemory memory,
+ VkDeviceSize memoryOffset,
+ VkBuffer buffer,
+ const void* pNext)
+{
+ if(pNext != VMA_NULL)
+ {
+#if VMA_BIND_MEMORY2
+ if(m_UseKhrBindMemory2 && m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL)
+ {
+ VkBindBufferMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR };
+ bindBufferMemoryInfo.pNext = pNext;
+ bindBufferMemoryInfo.buffer = buffer;
+ bindBufferMemoryInfo.memory = memory;
+ bindBufferMemoryInfo.memoryOffset = memoryOffset;
+ return (*m_VulkanFunctions.vkBindBufferMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo);
+ }
+ else
+#endif // #if VMA_BIND_MEMORY2
+ {
+ return VK_ERROR_EXTENSION_NOT_PRESENT;
+ }
+ }
+ else
+ {
+ return (*m_VulkanFunctions.vkBindBufferMemory)(m_hDevice, buffer, memory, memoryOffset);
+ }
+}
+
+VkResult VmaAllocator_T::BindVulkanImage(
+ VkDeviceMemory memory,
+ VkDeviceSize memoryOffset,
+ VkImage image,
+ const void* pNext)
+{
+ if(pNext != VMA_NULL)
+ {
+#if VMA_BIND_MEMORY2
+ if(m_UseKhrBindMemory2 && m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL)
+ {
+ VkBindImageMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO_KHR };
+ bindBufferMemoryInfo.pNext = pNext;
+ bindBufferMemoryInfo.image = image;
+ bindBufferMemoryInfo.memory = memory;
+ bindBufferMemoryInfo.memoryOffset = memoryOffset;
+ return (*m_VulkanFunctions.vkBindImageMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo);
+ }
+ else
+#endif // #if VMA_BIND_MEMORY2
+ {
+ return VK_ERROR_EXTENSION_NOT_PRESENT;
+ }
+ }
+ else
+ {
+ return (*m_VulkanFunctions.vkBindImageMemory)(m_hDevice, image, memory, memoryOffset);
+ }
+}
+
+VkResult VmaAllocator_T::Map(VmaAllocation hAllocation, void** ppData)
+{
+ if(hAllocation->CanBecomeLost())
+ {
+ return VK_ERROR_MEMORY_MAP_FAILED;
+ }
+
+ switch(hAllocation->GetType())
+ {
+ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+ {
+ VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
+ char *pBytes = VMA_NULL;
+ VkResult res = pBlock->Map(this, 1, (void**)&pBytes);
+ if(res == VK_SUCCESS)
+ {
+ *ppData = pBytes + (ptrdiff_t)hAllocation->GetOffset();
+ hAllocation->BlockAllocMap();
+ }
+ return res;
+ }
+ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+ return hAllocation->DedicatedAllocMap(this, ppData);
+ default:
+ VMA_ASSERT(0);
+ return VK_ERROR_MEMORY_MAP_FAILED;
+ }
+}
+
+void VmaAllocator_T::Unmap(VmaAllocation hAllocation)
+{
+ switch(hAllocation->GetType())
+ {
+ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+ {
+ VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
+ hAllocation->BlockAllocUnmap();
+ pBlock->Unmap(this, 1);
+ }
+ break;
+ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+ hAllocation->DedicatedAllocUnmap(this);
+ break;
+ default:
+ VMA_ASSERT(0);
+ }
+}
+
+VkResult VmaAllocator_T::BindBufferMemory(
+ VmaAllocation hAllocation,
+ VkDeviceSize allocationLocalOffset,
+ VkBuffer hBuffer,
+ const void* pNext)
+{
+ VkResult res = VK_SUCCESS;
+ switch(hAllocation->GetType())
+ {
+ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+ res = BindVulkanBuffer(hAllocation->GetMemory(), allocationLocalOffset, hBuffer, pNext);
+ break;
+ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+ {
+ VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
+ VMA_ASSERT(pBlock && "Binding buffer to allocation that doesn't belong to any block. Is the allocation lost?");
+ res = pBlock->BindBufferMemory(this, hAllocation, allocationLocalOffset, hBuffer, pNext);
+ break;
+ }
+ default:
+ VMA_ASSERT(0);
+ }
+ return res;
+}
+
+VkResult VmaAllocator_T::BindImageMemory(
+ VmaAllocation hAllocation,
+ VkDeviceSize allocationLocalOffset,
+ VkImage hImage,
+ const void* pNext)
+{
+ VkResult res = VK_SUCCESS;
+ switch(hAllocation->GetType())
+ {
+ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+ res = BindVulkanImage(hAllocation->GetMemory(), allocationLocalOffset, hImage, pNext);
+ break;
+ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+ {
+ VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();
+ VMA_ASSERT(pBlock && "Binding image to allocation that doesn't belong to any block. Is the allocation lost?");
+ res = pBlock->BindImageMemory(this, hAllocation, allocationLocalOffset, hImage, pNext);
+ break;
+ }
+ default:
+ VMA_ASSERT(0);
+ }
+ return res;
+}
+
+void VmaAllocator_T::FlushOrInvalidateAllocation(
+ VmaAllocation hAllocation,
+ VkDeviceSize offset, VkDeviceSize size,
+ VMA_CACHE_OPERATION op)
+{
+ const uint32_t memTypeIndex = hAllocation->GetMemoryTypeIndex();
+ if(size > 0 && IsMemoryTypeNonCoherent(memTypeIndex))
+ {
+ const VkDeviceSize allocationSize = hAllocation->GetSize();
+ VMA_ASSERT(offset <= allocationSize);
+
+ const VkDeviceSize nonCoherentAtomSize = m_PhysicalDeviceProperties.limits.nonCoherentAtomSize;
+
+ VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE };
+ memRange.memory = hAllocation->GetMemory();
+
+ switch(hAllocation->GetType())
+ {
+ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+ memRange.offset = VmaAlignDown(offset, nonCoherentAtomSize);
+ if(size == VK_WHOLE_SIZE)
+ {
+ memRange.size = allocationSize - memRange.offset;
+ }
+ else
+ {
+ VMA_ASSERT(offset + size <= allocationSize);
+ memRange.size = VMA_MIN(
+ VmaAlignUp(size + (offset - memRange.offset), nonCoherentAtomSize),
+ allocationSize - memRange.offset);
+ }
+ break;
+
+ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+ {
+ // 1. Still within this allocation.
+ memRange.offset = VmaAlignDown(offset, nonCoherentAtomSize);
+ if(size == VK_WHOLE_SIZE)
+ {
+ size = allocationSize - offset;
+ }
+ else
+ {
+ VMA_ASSERT(offset + size <= allocationSize);
+ }
+ memRange.size = VmaAlignUp(size + (offset - memRange.offset), nonCoherentAtomSize);
+
+ // 2. Adjust to whole block.
+ const VkDeviceSize allocationOffset = hAllocation->GetOffset();
+ VMA_ASSERT(allocationOffset % nonCoherentAtomSize == 0);
+ const VkDeviceSize blockSize = hAllocation->GetBlock()->m_pMetadata->GetSize();
+ memRange.offset += allocationOffset;
+ memRange.size = VMA_MIN(memRange.size, blockSize - memRange.offset);
+
+ break;
+ }
+
+ default:
+ VMA_ASSERT(0);
+ }
+
+ switch(op)
+ {
+ case VMA_CACHE_FLUSH:
+ (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, 1, &memRange);
+ break;
+ case VMA_CACHE_INVALIDATE:
+ (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, 1, &memRange);
+ break;
+ default:
+ VMA_ASSERT(0);
+ }
+ }
+ // else: Just ignore this call.
+}
+
+void VmaAllocator_T::FreeDedicatedMemory(VmaAllocation allocation)
+{
+ VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
+
+ const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
+ {
+ VmaMutexLockWrite lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
+ AllocationVectorType* const pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex];
+ VMA_ASSERT(pDedicatedAllocations);
+ bool success = VmaVectorRemoveSorted<VmaPointerLess>(*pDedicatedAllocations, allocation);
+ VMA_ASSERT(success);
+ }
+
+ VkDeviceMemory hMemory = allocation->GetMemory();
+
+ /*
+ There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory
+ before vkFreeMemory.
+
+ if(allocation->GetMappedData() != VMA_NULL)
+ {
+ (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory);
+ }
+ */
+
+ FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory);
+
+ VMA_DEBUG_LOG(" Freed DedicatedMemory MemoryTypeIndex=%u", memTypeIndex);
+}
+
+uint32_t VmaAllocator_T::CalculateGpuDefragmentationMemoryTypeBits() const
+{
+ VkBufferCreateInfo dummyBufCreateInfo;
+ VmaFillGpuDefragmentationBufferCreateInfo(dummyBufCreateInfo);
+
+ uint32_t memoryTypeBits = 0;
+
+ // Create buffer.
+ VkBuffer buf = VK_NULL_HANDLE;
+ VkResult res = (*GetVulkanFunctions().vkCreateBuffer)(
+ m_hDevice, &dummyBufCreateInfo, GetAllocationCallbacks(), &buf);
+ if(res == VK_SUCCESS)
+ {
+ // Query for supported memory types.
+ VkMemoryRequirements memReq;
+ (*GetVulkanFunctions().vkGetBufferMemoryRequirements)(m_hDevice, buf, &memReq);
+ memoryTypeBits = memReq.memoryTypeBits;
+
+ // Destroy buffer.
+ (*GetVulkanFunctions().vkDestroyBuffer)(m_hDevice, buf, GetAllocationCallbacks());
+ }
+
+ return memoryTypeBits;
+}
+
+void VmaAllocator_T::FillAllocation(const VmaAllocation hAllocation, uint8_t pattern)
+{
+ if(VMA_DEBUG_INITIALIZE_ALLOCATIONS &&
+ !hAllocation->CanBecomeLost() &&
+ (m_MemProps.memoryTypes[hAllocation->GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
+ {
+ void* pData = VMA_NULL;
+ VkResult res = Map(hAllocation, &pData);
+ if(res == VK_SUCCESS)
+ {
+ memset(pData, (int)pattern, (size_t)hAllocation->GetSize());
+ FlushOrInvalidateAllocation(hAllocation, 0, VK_WHOLE_SIZE, VMA_CACHE_FLUSH);
+ Unmap(hAllocation);
+ }
+ else
+ {
+ VMA_ASSERT(0 && "VMA_DEBUG_INITIALIZE_ALLOCATIONS is enabled, but couldn't map memory to fill allocation.");
+ }
+ }
+}
+
+uint32_t VmaAllocator_T::GetGpuDefragmentationMemoryTypeBits()
+{
+ uint32_t memoryTypeBits = m_GpuDefragmentationMemoryTypeBits.load();
+ if(memoryTypeBits == UINT32_MAX)
+ {
+ memoryTypeBits = CalculateGpuDefragmentationMemoryTypeBits();
+ m_GpuDefragmentationMemoryTypeBits.store(memoryTypeBits);
+ }
+ return memoryTypeBits;
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json)
+{
+ bool dedicatedAllocationsStarted = false;
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+ {
+ VmaMutexLockRead dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
+ AllocationVectorType* const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex];
+ VMA_ASSERT(pDedicatedAllocVector);
+ if(pDedicatedAllocVector->empty() == false)
+ {
+ if(dedicatedAllocationsStarted == false)
+ {
+ dedicatedAllocationsStarted = true;
+ json.WriteString("DedicatedAllocations");
+ json.BeginObject();
+ }
+
+ json.BeginString("Type ");
+ json.ContinueString(memTypeIndex);
+ json.EndString();
+
+ json.BeginArray();
+
+ for(size_t i = 0; i < pDedicatedAllocVector->size(); ++i)
+ {
+ json.BeginObject(true);
+ const VmaAllocation hAlloc = (*pDedicatedAllocVector)[i];
+ hAlloc->PrintParameters(json);
+ json.EndObject();
+ }
+
+ json.EndArray();
+ }
+ }
+ if(dedicatedAllocationsStarted)
+ {
+ json.EndObject();
+ }
+
+ {
+ bool allocationsStarted = false;
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+ {
+ if(m_pBlockVectors[memTypeIndex]->IsEmpty() == false)
+ {
+ if(allocationsStarted == false)
+ {
+ allocationsStarted = true;
+ json.WriteString("DefaultPools");
+ json.BeginObject();
+ }
+
+ json.BeginString("Type ");
+ json.ContinueString(memTypeIndex);
+ json.EndString();
+
+ m_pBlockVectors[memTypeIndex]->PrintDetailedMap(json);
+ }
+ }
+ if(allocationsStarted)
+ {
+ json.EndObject();
+ }
+ }
+
+ // Custom pools
+ {
+ VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
+ const size_t poolCount = m_Pools.size();
+ if(poolCount > 0)
+ {
+ json.WriteString("Pools");
+ json.BeginObject();
+ for(size_t poolIndex = 0; poolIndex < poolCount; ++poolIndex)
+ {
+ json.BeginString();
+ json.ContinueString(m_Pools[poolIndex]->GetId());
+ json.EndString();
+
+ m_Pools[poolIndex]->m_BlockVector.PrintDetailedMap(json);
+ }
+ json.EndObject();
+ }
+ }
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+////////////////////////////////////////////////////////////////////////////////
+// Public interface
+
+VkResult vmaCreateAllocator(
+ const VmaAllocatorCreateInfo* pCreateInfo,
+ VmaAllocator* pAllocator)
+{
+ VMA_ASSERT(pCreateInfo && pAllocator);
+ VMA_DEBUG_LOG("vmaCreateAllocator");
+ *pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo);
+ return (*pAllocator)->Init(pCreateInfo);
+}
+
+void vmaDestroyAllocator(
+ VmaAllocator allocator)
+{
+ if(allocator != VK_NULL_HANDLE)
+ {
+ VMA_DEBUG_LOG("vmaDestroyAllocator");
+ VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks;
+ vma_delete(&allocationCallbacks, allocator);
+ }
+}
+
+void vmaGetPhysicalDeviceProperties(
+ VmaAllocator allocator,
+ const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties)
+{
+ VMA_ASSERT(allocator && ppPhysicalDeviceProperties);
+ *ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties;
+}
+
+void vmaGetMemoryProperties(
+ VmaAllocator allocator,
+ const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties)
+{
+ VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties);
+ *ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps;
+}
+
+void vmaGetMemoryTypeProperties(
+ VmaAllocator allocator,
+ uint32_t memoryTypeIndex,
+ VkMemoryPropertyFlags* pFlags)
+{
+ VMA_ASSERT(allocator && pFlags);
+ VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount());
+ *pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags;
+}
+
+void vmaSetCurrentFrameIndex(
+ VmaAllocator allocator,
+ uint32_t frameIndex)
+{
+ VMA_ASSERT(allocator);
+ VMA_ASSERT(frameIndex != VMA_FRAME_INDEX_LOST);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ allocator->SetCurrentFrameIndex(frameIndex);
+}
+
+void vmaCalculateStats(
+ VmaAllocator allocator,
+ VmaStats* pStats)
+{
+ VMA_ASSERT(allocator && pStats);
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+ allocator->CalculateStats(pStats);
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+void vmaBuildStatsString(
+ VmaAllocator allocator,
+ char** ppStatsString,
+ VkBool32 detailedMap)
+{
+ VMA_ASSERT(allocator && ppStatsString);
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ VmaStringBuilder sb(allocator);
+ {
+ VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb);
+ json.BeginObject();
+
+ VmaStats stats;
+ allocator->CalculateStats(&stats);
+
+ json.WriteString("Total");
+ VmaPrintStatInfo(json, stats.total);
+
+ for(uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex)
+ {
+ json.BeginString("Heap ");
+ json.ContinueString(heapIndex);
+ json.EndString();
+ json.BeginObject();
+
+ json.WriteString("Size");
+ json.WriteNumber(allocator->m_MemProps.memoryHeaps[heapIndex].size);
+
+ json.WriteString("Flags");
+ json.BeginArray(true);
+ if((allocator->m_MemProps.memoryHeaps[heapIndex].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) != 0)
+ {
+ json.WriteString("DEVICE_LOCAL");
+ }
+ json.EndArray();
+
+ if(stats.memoryHeap[heapIndex].blockCount > 0)
+ {
+ json.WriteString("Stats");
+ VmaPrintStatInfo(json, stats.memoryHeap[heapIndex]);
+ }
+
+ for(uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex)
+ {
+ if(allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex)
+ {
+ json.BeginString("Type ");
+ json.ContinueString(typeIndex);
+ json.EndString();
+
+ json.BeginObject();
+
+ json.WriteString("Flags");
+ json.BeginArray(true);
+ VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags;
+ if((flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0)
+ {
+ json.WriteString("DEVICE_LOCAL");
+ }
+ if((flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
+ {
+ json.WriteString("HOST_VISIBLE");
+ }
+ if((flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0)
+ {
+ json.WriteString("HOST_COHERENT");
+ }
+ if((flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) != 0)
+ {
+ json.WriteString("HOST_CACHED");
+ }
+ if((flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) != 0)
+ {
+ json.WriteString("LAZILY_ALLOCATED");
+ }
+ json.EndArray();
+
+ if(stats.memoryType[typeIndex].blockCount > 0)
+ {
+ json.WriteString("Stats");
+ VmaPrintStatInfo(json, stats.memoryType[typeIndex]);
+ }
+
+ json.EndObject();
+ }
+ }
+
+ json.EndObject();
+ }
+ if(detailedMap == VK_TRUE)
+ {
+ allocator->PrintDetailedMap(json);
+ }
+
+ json.EndObject();
+ }
+
+ const size_t len = sb.GetLength();
+ char* const pChars = vma_new_array(allocator, char, len + 1);
+ if(len > 0)
+ {
+ memcpy(pChars, sb.GetData(), len);
+ }
+ pChars[len] = '\0';
+ *ppStatsString = pChars;
+}
+
+void vmaFreeStatsString(
+ VmaAllocator allocator,
+ char* pStatsString)
+{
+ if(pStatsString != VMA_NULL)
+ {
+ VMA_ASSERT(allocator);
+ size_t len = strlen(pStatsString);
+ vma_delete_array(allocator, pStatsString, len + 1);
+ }
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+/*
+This function is not protected by any mutex because it just reads immutable data.
+*/
+VkResult vmaFindMemoryTypeIndex(
+ VmaAllocator allocator,
+ uint32_t memoryTypeBits,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ uint32_t* pMemoryTypeIndex)
+{
+ VMA_ASSERT(allocator != VK_NULL_HANDLE);
+ VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
+ VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
+
+ if(pAllocationCreateInfo->memoryTypeBits != 0)
+ {
+ memoryTypeBits &= pAllocationCreateInfo->memoryTypeBits;
+ }
+
+ uint32_t requiredFlags = pAllocationCreateInfo->requiredFlags;
+ uint32_t preferredFlags = pAllocationCreateInfo->preferredFlags;
+
+ // Convert usage to requiredFlags and preferredFlags.
+ switch(pAllocationCreateInfo->usage)
+ {
+ case VMA_MEMORY_USAGE_UNKNOWN:
+ break;
+ case VMA_MEMORY_USAGE_GPU_ONLY:
+ if(!allocator->IsIntegratedGpu() || (preferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
+ {
+ preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
+ }
+ break;
+ case VMA_MEMORY_USAGE_CPU_ONLY:
+ requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
+ break;
+ case VMA_MEMORY_USAGE_CPU_TO_GPU:
+ requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+ if(!allocator->IsIntegratedGpu() || (preferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
+ {
+ preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
+ }
+ break;
+ case VMA_MEMORY_USAGE_GPU_TO_CPU:
+ requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+ preferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
+ break;
+ default:
+ break;
+ }
+
+ *pMemoryTypeIndex = UINT32_MAX;
+ uint32_t minCost = UINT32_MAX;
+ for(uint32_t memTypeIndex = 0, memTypeBit = 1;
+ memTypeIndex < allocator->GetMemoryTypeCount();
+ ++memTypeIndex, memTypeBit <<= 1)
+ {
+ // This memory type is acceptable according to memoryTypeBits bitmask.
+ if((memTypeBit & memoryTypeBits) != 0)
+ {
+ const VkMemoryPropertyFlags currFlags =
+ allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags;
+ // This memory type contains requiredFlags.
+ if((requiredFlags & ~currFlags) == 0)
+ {
+ // Calculate cost as number of bits from preferredFlags not present in this memory type.
+ uint32_t currCost = VmaCountBitsSet(preferredFlags & ~currFlags);
+ // Remember memory type with lowest cost.
+ if(currCost < minCost)
+ {
+ *pMemoryTypeIndex = memTypeIndex;
+ if(currCost == 0)
+ {
+ return VK_SUCCESS;
+ }
+ minCost = currCost;
+ }
+ }
+ }
+ }
+ return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT;
+}
+
+VkResult vmaFindMemoryTypeIndexForBufferInfo(
+ VmaAllocator allocator,
+ const VkBufferCreateInfo* pBufferCreateInfo,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ uint32_t* pMemoryTypeIndex)
+{
+ VMA_ASSERT(allocator != VK_NULL_HANDLE);
+ VMA_ASSERT(pBufferCreateInfo != VMA_NULL);
+ VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
+ VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
+
+ const VkDevice hDev = allocator->m_hDevice;
+ VkBuffer hBuffer = VK_NULL_HANDLE;
+ VkResult res = allocator->GetVulkanFunctions().vkCreateBuffer(
+ hDev, pBufferCreateInfo, allocator->GetAllocationCallbacks(), &hBuffer);
+ if(res == VK_SUCCESS)
+ {
+ VkMemoryRequirements memReq = {};
+ allocator->GetVulkanFunctions().vkGetBufferMemoryRequirements(
+ hDev, hBuffer, &memReq);
+
+ res = vmaFindMemoryTypeIndex(
+ allocator,
+ memReq.memoryTypeBits,
+ pAllocationCreateInfo,
+ pMemoryTypeIndex);
+
+ allocator->GetVulkanFunctions().vkDestroyBuffer(
+ hDev, hBuffer, allocator->GetAllocationCallbacks());
+ }
+ return res;
+}
+
+VkResult vmaFindMemoryTypeIndexForImageInfo(
+ VmaAllocator allocator,
+ const VkImageCreateInfo* pImageCreateInfo,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ uint32_t* pMemoryTypeIndex)
+{
+ VMA_ASSERT(allocator != VK_NULL_HANDLE);
+ VMA_ASSERT(pImageCreateInfo != VMA_NULL);
+ VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
+ VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
+
+ const VkDevice hDev = allocator->m_hDevice;
+ VkImage hImage = VK_NULL_HANDLE;
+ VkResult res = allocator->GetVulkanFunctions().vkCreateImage(
+ hDev, pImageCreateInfo, allocator->GetAllocationCallbacks(), &hImage);
+ if(res == VK_SUCCESS)
+ {
+ VkMemoryRequirements memReq = {};
+ allocator->GetVulkanFunctions().vkGetImageMemoryRequirements(
+ hDev, hImage, &memReq);
+
+ res = vmaFindMemoryTypeIndex(
+ allocator,
+ memReq.memoryTypeBits,
+ pAllocationCreateInfo,
+ pMemoryTypeIndex);
+
+ allocator->GetVulkanFunctions().vkDestroyImage(
+ hDev, hImage, allocator->GetAllocationCallbacks());
+ }
+ return res;
+}
+
+VkResult vmaCreatePool(
+ VmaAllocator allocator,
+ const VmaPoolCreateInfo* pCreateInfo,
+ VmaPool* pPool)
+{
+ VMA_ASSERT(allocator && pCreateInfo && pPool);
+
+ VMA_DEBUG_LOG("vmaCreatePool");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ VkResult res = allocator->CreatePool(pCreateInfo, pPool);
+
+#if VMA_RECORDING_ENABLED
+ if(allocator->GetRecorder() != VMA_NULL)
+ {
+ allocator->GetRecorder()->RecordCreatePool(allocator->GetCurrentFrameIndex(), *pCreateInfo, *pPool);
+ }
+#endif
+
+ return res;
+}
+
+void vmaDestroyPool(
+ VmaAllocator allocator,
+ VmaPool pool)
+{
+ VMA_ASSERT(allocator);
+
+ if(pool == VK_NULL_HANDLE)
+ {
+ return;
+ }
+
+ VMA_DEBUG_LOG("vmaDestroyPool");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+#if VMA_RECORDING_ENABLED
+ if(allocator->GetRecorder() != VMA_NULL)
+ {
+ allocator->GetRecorder()->RecordDestroyPool(allocator->GetCurrentFrameIndex(), pool);
+ }
+#endif
+
+ allocator->DestroyPool(pool);
+}
+
+void vmaGetPoolStats(
+ VmaAllocator allocator,
+ VmaPool pool,
+ VmaPoolStats* pPoolStats)
+{
+ VMA_ASSERT(allocator && pool && pPoolStats);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ allocator->GetPoolStats(pool, pPoolStats);
+}
+
+void vmaMakePoolAllocationsLost(
+ VmaAllocator allocator,
+ VmaPool pool,
+ size_t* pLostAllocationCount)
+{
+ VMA_ASSERT(allocator && pool);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+#if VMA_RECORDING_ENABLED
+ if(allocator->GetRecorder() != VMA_NULL)
+ {
+ allocator->GetRecorder()->RecordMakePoolAllocationsLost(allocator->GetCurrentFrameIndex(), pool);
+ }
+#endif
+
+ allocator->MakePoolAllocationsLost(pool, pLostAllocationCount);
+}
+
+VkResult vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool)
+{
+ VMA_ASSERT(allocator && pool);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ VMA_DEBUG_LOG("vmaCheckPoolCorruption");
+
+ return allocator->CheckPoolCorruption(pool);
+}
+
+VkResult vmaAllocateMemory(
+ VmaAllocator allocator,
+ const VkMemoryRequirements* pVkMemoryRequirements,
+ const VmaAllocationCreateInfo* pCreateInfo,
+ VmaAllocation* pAllocation,
+ VmaAllocationInfo* pAllocationInfo)
+{
+ VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation);
+
+ VMA_DEBUG_LOG("vmaAllocateMemory");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ VkResult result = allocator->AllocateMemory(
+ *pVkMemoryRequirements,
+ false, // requiresDedicatedAllocation
+ false, // prefersDedicatedAllocation
+ VK_NULL_HANDLE, // dedicatedBuffer
+ VK_NULL_HANDLE, // dedicatedImage
+ *pCreateInfo,
+ VMA_SUBALLOCATION_TYPE_UNKNOWN,
+ 1, // allocationCount
+ pAllocation);
+
+#if VMA_RECORDING_ENABLED
+ if(allocator->GetRecorder() != VMA_NULL)
+ {
+ allocator->GetRecorder()->RecordAllocateMemory(
+ allocator->GetCurrentFrameIndex(),
+ *pVkMemoryRequirements,
+ *pCreateInfo,
+ *pAllocation);
+ }
+#endif
+
+ if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS)
+ {
+ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
+ }
+
+ return result;
+}
+
+VkResult vmaAllocateMemoryPages(
+ VmaAllocator allocator,
+ const VkMemoryRequirements* pVkMemoryRequirements,
+ const VmaAllocationCreateInfo* pCreateInfo,
+ size_t allocationCount,
+ VmaAllocation* pAllocations,
+ VmaAllocationInfo* pAllocationInfo)
+{
+ if(allocationCount == 0)
+ {
+ return VK_SUCCESS;
+ }
+
+ VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocations);
+
+ VMA_DEBUG_LOG("vmaAllocateMemoryPages");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ VkResult result = allocator->AllocateMemory(
+ *pVkMemoryRequirements,
+ false, // requiresDedicatedAllocation
+ false, // prefersDedicatedAllocation
+ VK_NULL_HANDLE, // dedicatedBuffer
+ VK_NULL_HANDLE, // dedicatedImage
+ *pCreateInfo,
+ VMA_SUBALLOCATION_TYPE_UNKNOWN,
+ allocationCount,
+ pAllocations);
+
+#if VMA_RECORDING_ENABLED
+ if(allocator->GetRecorder() != VMA_NULL)
+ {
+ allocator->GetRecorder()->RecordAllocateMemoryPages(
+ allocator->GetCurrentFrameIndex(),
+ *pVkMemoryRequirements,
+ *pCreateInfo,
+ (uint64_t)allocationCount,
+ pAllocations);
+ }
+#endif
+
+ if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS)
+ {
+ for(size_t i = 0; i < allocationCount; ++i)
+ {
+ allocator->GetAllocationInfo(pAllocations[i], pAllocationInfo + i);
+ }
+ }
+
+ return result;
+}
+
+VkResult vmaAllocateMemoryForBuffer(
+ VmaAllocator allocator,
+ VkBuffer buffer,
+ const VmaAllocationCreateInfo* pCreateInfo,
+ VmaAllocation* pAllocation,
+ VmaAllocationInfo* pAllocationInfo)
+{
+ VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation);
+
+ VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ VkMemoryRequirements vkMemReq = {};
+ bool requiresDedicatedAllocation = false;
+ bool prefersDedicatedAllocation = false;
+ allocator->GetBufferMemoryRequirements(buffer, vkMemReq,
+ requiresDedicatedAllocation,
+ prefersDedicatedAllocation);
+
+ VkResult result = allocator->AllocateMemory(
+ vkMemReq,
+ requiresDedicatedAllocation,
+ prefersDedicatedAllocation,
+ buffer, // dedicatedBuffer
+ VK_NULL_HANDLE, // dedicatedImage
+ *pCreateInfo,
+ VMA_SUBALLOCATION_TYPE_BUFFER,
+ 1, // allocationCount
+ pAllocation);
+
+#if VMA_RECORDING_ENABLED
+ if(allocator->GetRecorder() != VMA_NULL)
+ {
+ allocator->GetRecorder()->RecordAllocateMemoryForBuffer(
+ allocator->GetCurrentFrameIndex(),
+ vkMemReq,
+ requiresDedicatedAllocation,
+ prefersDedicatedAllocation,
+ *pCreateInfo,
+ *pAllocation);
+ }
+#endif
+
+ if(pAllocationInfo && result == VK_SUCCESS)
+ {
+ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
+ }
+
+ return result;
+}
+
+VkResult vmaAllocateMemoryForImage(
+ VmaAllocator allocator,
+ VkImage image,
+ const VmaAllocationCreateInfo* pCreateInfo,
+ VmaAllocation* pAllocation,
+ VmaAllocationInfo* pAllocationInfo)
+{
+ VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation);
+
+ VMA_DEBUG_LOG("vmaAllocateMemoryForImage");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ VkMemoryRequirements vkMemReq = {};
+ bool requiresDedicatedAllocation = false;
+ bool prefersDedicatedAllocation = false;
+ allocator->GetImageMemoryRequirements(image, vkMemReq,
+ requiresDedicatedAllocation, prefersDedicatedAllocation);
+
+ VkResult result = allocator->AllocateMemory(
+ vkMemReq,
+ requiresDedicatedAllocation,
+ prefersDedicatedAllocation,
+ VK_NULL_HANDLE, // dedicatedBuffer
+ image, // dedicatedImage
+ *pCreateInfo,
+ VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN,
+ 1, // allocationCount
+ pAllocation);
+
+#if VMA_RECORDING_ENABLED
+ if(allocator->GetRecorder() != VMA_NULL)
+ {
+ allocator->GetRecorder()->RecordAllocateMemoryForImage(
+ allocator->GetCurrentFrameIndex(),
+ vkMemReq,
+ requiresDedicatedAllocation,
+ prefersDedicatedAllocation,
+ *pCreateInfo,
+ *pAllocation);
+ }
+#endif
+
+ if(pAllocationInfo && result == VK_SUCCESS)
+ {
+ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
+ }
+
+ return result;
+}
+
+void vmaFreeMemory(
+ VmaAllocator allocator,
+ VmaAllocation allocation)
+{
+ VMA_ASSERT(allocator);
+
+ if(allocation == VK_NULL_HANDLE)
+ {
+ return;
+ }
+
+ VMA_DEBUG_LOG("vmaFreeMemory");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+#if VMA_RECORDING_ENABLED
+ if(allocator->GetRecorder() != VMA_NULL)
+ {
+ allocator->GetRecorder()->RecordFreeMemory(
+ allocator->GetCurrentFrameIndex(),
+ allocation);
+ }
+#endif
+
+ allocator->FreeMemory(
+ 1, // allocationCount
+ &allocation);
+}
+
+void vmaFreeMemoryPages(
+ VmaAllocator allocator,
+ size_t allocationCount,
+ VmaAllocation* pAllocations)
+{
+ if(allocationCount == 0)
+ {
+ return;
+ }
+
+ VMA_ASSERT(allocator);
+
+ VMA_DEBUG_LOG("vmaFreeMemoryPages");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+#if VMA_RECORDING_ENABLED
+ if(allocator->GetRecorder() != VMA_NULL)
+ {
+ allocator->GetRecorder()->RecordFreeMemoryPages(
+ allocator->GetCurrentFrameIndex(),
+ (uint64_t)allocationCount,
+ pAllocations);
+ }
+#endif
+
+ allocator->FreeMemory(allocationCount, pAllocations);
+}
+
+VkResult vmaResizeAllocation(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ VkDeviceSize newSize)
+{
+ VMA_ASSERT(allocator && allocation);
+
+ VMA_DEBUG_LOG("vmaResizeAllocation");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return allocator->ResizeAllocation(allocation, newSize);
+}
+
+void vmaGetAllocationInfo(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ VmaAllocationInfo* pAllocationInfo)
+{
+ VMA_ASSERT(allocator && allocation && pAllocationInfo);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+#if VMA_RECORDING_ENABLED
+ if(allocator->GetRecorder() != VMA_NULL)
+ {
+ allocator->GetRecorder()->RecordGetAllocationInfo(
+ allocator->GetCurrentFrameIndex(),
+ allocation);
+ }
+#endif
+
+ allocator->GetAllocationInfo(allocation, pAllocationInfo);
+}
+
+VkBool32 vmaTouchAllocation(
+ VmaAllocator allocator,
+ VmaAllocation allocation)
+{
+ VMA_ASSERT(allocator && allocation);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+#if VMA_RECORDING_ENABLED
+ if(allocator->GetRecorder() != VMA_NULL)
+ {
+ allocator->GetRecorder()->RecordTouchAllocation(
+ allocator->GetCurrentFrameIndex(),
+ allocation);
+ }
+#endif
+
+ return allocator->TouchAllocation(allocation);
+}
+
+void vmaSetAllocationUserData(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ void* pUserData)
+{
+ VMA_ASSERT(allocator && allocation);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ allocation->SetUserData(allocator, pUserData);
+
+#if VMA_RECORDING_ENABLED
+ if(allocator->GetRecorder() != VMA_NULL)
+ {
+ allocator->GetRecorder()->RecordSetAllocationUserData(
+ allocator->GetCurrentFrameIndex(),
+ allocation,
+ pUserData);
+ }
+#endif
+}
+
+void vmaCreateLostAllocation(
+ VmaAllocator allocator,
+ VmaAllocation* pAllocation)
+{
+ VMA_ASSERT(allocator && pAllocation);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
+
+ allocator->CreateLostAllocation(pAllocation);
+
+#if VMA_RECORDING_ENABLED
+ if(allocator->GetRecorder() != VMA_NULL)
+ {
+ allocator->GetRecorder()->RecordCreateLostAllocation(
+ allocator->GetCurrentFrameIndex(),
+ *pAllocation);
+ }
+#endif
+}
+
+VkResult vmaMapMemory(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ void** ppData)
+{
+ VMA_ASSERT(allocator && allocation && ppData);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ VkResult res = allocator->Map(allocation, ppData);
+
+#if VMA_RECORDING_ENABLED
+ if(allocator->GetRecorder() != VMA_NULL)
+ {
+ allocator->GetRecorder()->RecordMapMemory(
+ allocator->GetCurrentFrameIndex(),
+ allocation);
+ }
+#endif
+
+ return res;
+}
+
+void vmaUnmapMemory(
+ VmaAllocator allocator,
+ VmaAllocation allocation)
+{
+ VMA_ASSERT(allocator && allocation);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+#if VMA_RECORDING_ENABLED
+ if(allocator->GetRecorder() != VMA_NULL)
+ {
+ allocator->GetRecorder()->RecordUnmapMemory(
+ allocator->GetCurrentFrameIndex(),
+ allocation);
+ }
+#endif
+
+ allocator->Unmap(allocation);
+}
+
+void vmaFlushAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size)
+{
+ VMA_ASSERT(allocator && allocation);
+
+ VMA_DEBUG_LOG("vmaFlushAllocation");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_FLUSH);
+
+#if VMA_RECORDING_ENABLED
+ if(allocator->GetRecorder() != VMA_NULL)
+ {
+ allocator->GetRecorder()->RecordFlushAllocation(
+ allocator->GetCurrentFrameIndex(),
+ allocation, offset, size);
+ }
+#endif
+}
+
+void vmaInvalidateAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size)
+{
+ VMA_ASSERT(allocator && allocation);
+
+ VMA_DEBUG_LOG("vmaInvalidateAllocation");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_INVALIDATE);
+
+#if VMA_RECORDING_ENABLED
+ if(allocator->GetRecorder() != VMA_NULL)
+ {
+ allocator->GetRecorder()->RecordInvalidateAllocation(
+ allocator->GetCurrentFrameIndex(),
+ allocation, offset, size);
+ }
+#endif
+}
+
+VkResult vmaCheckCorruption(VmaAllocator allocator, uint32_t memoryTypeBits)
+{
+ VMA_ASSERT(allocator);
+
+ VMA_DEBUG_LOG("vmaCheckCorruption");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return allocator->CheckCorruption(memoryTypeBits);
+}
+
+VkResult vmaDefragment(
+ VmaAllocator allocator,
+ VmaAllocation* pAllocations,
+ size_t allocationCount,
+ VkBool32* pAllocationsChanged,
+ const VmaDefragmentationInfo *pDefragmentationInfo,
+ VmaDefragmentationStats* pDefragmentationStats)
+{
+ // Deprecated interface, reimplemented using new one.
+
+ VmaDefragmentationInfo2 info2 = {};
+ info2.allocationCount = (uint32_t)allocationCount;
+ info2.pAllocations = pAllocations;
+ info2.pAllocationsChanged = pAllocationsChanged;
+ if(pDefragmentationInfo != VMA_NULL)
+ {
+ info2.maxCpuAllocationsToMove = pDefragmentationInfo->maxAllocationsToMove;
+ info2.maxCpuBytesToMove = pDefragmentationInfo->maxBytesToMove;
+ }
+ else
+ {
+ info2.maxCpuAllocationsToMove = UINT32_MAX;
+ info2.maxCpuBytesToMove = VK_WHOLE_SIZE;
+ }
+ // info2.flags, maxGpuAllocationsToMove, maxGpuBytesToMove, commandBuffer deliberately left zero.
+
+ VmaDefragmentationContext ctx;
+ VkResult res = vmaDefragmentationBegin(allocator, &info2, pDefragmentationStats, &ctx);
+ if(res == VK_NOT_READY)
+ {
+ res = vmaDefragmentationEnd( allocator, ctx);
+ }
+ return res;
+}
+
+VkResult vmaDefragmentationBegin(
+ VmaAllocator allocator,
+ const VmaDefragmentationInfo2* pInfo,
+ VmaDefragmentationStats* pStats,
+ VmaDefragmentationContext *pContext)
+{
+ VMA_ASSERT(allocator && pInfo && pContext);
+
+ // Degenerate case: Nothing to defragment.
+ if(pInfo->allocationCount == 0 && pInfo->poolCount == 0)
+ {
+ return VK_SUCCESS;
+ }
+
+ VMA_ASSERT(pInfo->allocationCount == 0 || pInfo->pAllocations != VMA_NULL);
+ VMA_ASSERT(pInfo->poolCount == 0 || pInfo->pPools != VMA_NULL);
+ VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->allocationCount, pInfo->pAllocations));
+ VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->poolCount, pInfo->pPools));
+
+ VMA_DEBUG_LOG("vmaDefragmentationBegin");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ VkResult res = allocator->DefragmentationBegin(*pInfo, pStats, pContext);
+
+#if VMA_RECORDING_ENABLED
+ if(allocator->GetRecorder() != VMA_NULL)
+ {
+ allocator->GetRecorder()->RecordDefragmentationBegin(
+ allocator->GetCurrentFrameIndex(), *pInfo, *pContext);
+ }
+#endif
+
+ return res;
+}
+
+VkResult vmaDefragmentationEnd(
+ VmaAllocator allocator,
+ VmaDefragmentationContext context)
+{
+ VMA_ASSERT(allocator);
+
+ VMA_DEBUG_LOG("vmaDefragmentationEnd");
+
+ if(context != VK_NULL_HANDLE)
+ {
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+#if VMA_RECORDING_ENABLED
+ if(allocator->GetRecorder() != VMA_NULL)
+ {
+ allocator->GetRecorder()->RecordDefragmentationEnd(
+ allocator->GetCurrentFrameIndex(), context);
+ }
+#endif
+
+ return allocator->DefragmentationEnd(context);
+ }
+ else
+ {
+ return VK_SUCCESS;
+ }
+}
+
+VkResult vmaBindBufferMemory(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ VkBuffer buffer)
+{
+ VMA_ASSERT(allocator && allocation && buffer);
+
+ VMA_DEBUG_LOG("vmaBindBufferMemory");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return allocator->BindBufferMemory(allocation, 0, buffer, VMA_NULL);
+}
+
+VkResult vmaBindBufferMemory2(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ VkDeviceSize allocationLocalOffset,
+ VkBuffer buffer,
+ const void* pNext)
+{
+ VMA_ASSERT(allocator && allocation && buffer);
+
+ VMA_DEBUG_LOG("vmaBindBufferMemory2");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return allocator->BindBufferMemory(allocation, allocationLocalOffset, buffer, pNext);
+}
+
+VkResult vmaBindImageMemory(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ VkImage image)
+{
+ VMA_ASSERT(allocator && allocation && image);
+
+ VMA_DEBUG_LOG("vmaBindImageMemory");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return allocator->BindImageMemory(allocation, 0, image, VMA_NULL);
+}
+
+VkResult vmaBindImageMemory2(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ VkDeviceSize allocationLocalOffset,
+ VkImage image,
+ const void* pNext)
+{
+ VMA_ASSERT(allocator && allocation && image);
+
+ VMA_DEBUG_LOG("vmaBindImageMemory2");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return allocator->BindImageMemory(allocation, allocationLocalOffset, image, pNext);
+}
+
+VkResult vmaCreateBuffer(
+ VmaAllocator allocator,
+ const VkBufferCreateInfo* pBufferCreateInfo,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ VkBuffer* pBuffer,
+ VmaAllocation* pAllocation,
+ VmaAllocationInfo* pAllocationInfo)
+{
+ VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation);
+
+ if(pBufferCreateInfo->size == 0)
+ {
+ return VK_ERROR_VALIDATION_FAILED_EXT;
+ }
+
+ VMA_DEBUG_LOG("vmaCreateBuffer");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ *pBuffer = VK_NULL_HANDLE;
+ *pAllocation = VK_NULL_HANDLE;
+
+ // 1. Create VkBuffer.
+ VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(
+ allocator->m_hDevice,
+ pBufferCreateInfo,
+ allocator->GetAllocationCallbacks(),
+ pBuffer);
+ if(res >= 0)
+ {
+ // 2. vkGetBufferMemoryRequirements.
+ VkMemoryRequirements vkMemReq = {};
+ bool requiresDedicatedAllocation = false;
+ bool prefersDedicatedAllocation = false;
+ allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq,
+ requiresDedicatedAllocation, prefersDedicatedAllocation);
+
+ // Make sure alignment requirements for specific buffer usages reported
+ // in Physical Device Properties are included in alignment reported by memory requirements.
+ if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) != 0)
+ {
+ VMA_ASSERT(vkMemReq.alignment %
+ allocator->m_PhysicalDeviceProperties.limits.minTexelBufferOffsetAlignment == 0);
+ }
+ if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT) != 0)
+ {
+ VMA_ASSERT(vkMemReq.alignment %
+ allocator->m_PhysicalDeviceProperties.limits.minUniformBufferOffsetAlignment == 0);
+ }
+ if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT) != 0)
+ {
+ VMA_ASSERT(vkMemReq.alignment %
+ allocator->m_PhysicalDeviceProperties.limits.minStorageBufferOffsetAlignment == 0);
+ }
+
+ // 3. Allocate memory using allocator.
+ res = allocator->AllocateMemory(
+ vkMemReq,
+ requiresDedicatedAllocation,
+ prefersDedicatedAllocation,
+ *pBuffer, // dedicatedBuffer
+ VK_NULL_HANDLE, // dedicatedImage
+ *pAllocationCreateInfo,
+ VMA_SUBALLOCATION_TYPE_BUFFER,
+ 1, // allocationCount
+ pAllocation);
+
+#if VMA_RECORDING_ENABLED
+ if(allocator->GetRecorder() != VMA_NULL)
+ {
+ allocator->GetRecorder()->RecordCreateBuffer(
+ allocator->GetCurrentFrameIndex(),
+ *pBufferCreateInfo,
+ *pAllocationCreateInfo,
+ *pAllocation);
+ }
+#endif
+
+ if(res >= 0)
+ {
+ // 3. Bind buffer with memory.
+ if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0)
+ {
+ res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL);
+ }
+ if(res >= 0)
+ {
+ // All steps succeeded.
+ #if VMA_STATS_STRING_ENABLED
+ (*pAllocation)->InitBufferImageUsage(pBufferCreateInfo->usage);
+ #endif
+ if(pAllocationInfo != VMA_NULL)
+ {
+ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
+ }
+
+ return VK_SUCCESS;
+ }
+ allocator->FreeMemory(
+ 1, // allocationCount
+ pAllocation);
+ *pAllocation = VK_NULL_HANDLE;
+ (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
+ *pBuffer = VK_NULL_HANDLE;
+ return res;
+ }
+ (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
+ *pBuffer = VK_NULL_HANDLE;
+ return res;
+ }
+ return res;
+}
+
+void vmaDestroyBuffer(
+ VmaAllocator allocator,
+ VkBuffer buffer,
+ VmaAllocation allocation)
+{
+ VMA_ASSERT(allocator);
+
+ if(buffer == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE)
+ {
+ return;
+ }
+
+ VMA_DEBUG_LOG("vmaDestroyBuffer");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+#if VMA_RECORDING_ENABLED
+ if(allocator->GetRecorder() != VMA_NULL)
+ {
+ allocator->GetRecorder()->RecordDestroyBuffer(
+ allocator->GetCurrentFrameIndex(),
+ allocation);
+ }
+#endif
+
+ if(buffer != VK_NULL_HANDLE)
+ {
+ (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks());
+ }
+
+ if(allocation != VK_NULL_HANDLE)
+ {
+ allocator->FreeMemory(
+ 1, // allocationCount
+ &allocation);
+ }
+}
+
+VkResult vmaCreateImage(
+ VmaAllocator allocator,
+ const VkImageCreateInfo* pImageCreateInfo,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ VkImage* pImage,
+ VmaAllocation* pAllocation,
+ VmaAllocationInfo* pAllocationInfo)
+{
+ VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation);
+
+ if(pImageCreateInfo->extent.width == 0 ||
+ pImageCreateInfo->extent.height == 0 ||
+ pImageCreateInfo->extent.depth == 0 ||
+ pImageCreateInfo->mipLevels == 0 ||
+ pImageCreateInfo->arrayLayers == 0)
+ {
+ return VK_ERROR_VALIDATION_FAILED_EXT;
+ }
+
+ VMA_DEBUG_LOG("vmaCreateImage");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ *pImage = VK_NULL_HANDLE;
+ *pAllocation = VK_NULL_HANDLE;
+
+ // 1. Create VkImage.
+ VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)(
+ allocator->m_hDevice,
+ pImageCreateInfo,
+ allocator->GetAllocationCallbacks(),
+ pImage);
+ if(res >= 0)
+ {
+ VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ?
+ VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL :
+ VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR;
+
+ // 2. Allocate memory using allocator.
+ VkMemoryRequirements vkMemReq = {};
+ bool requiresDedicatedAllocation = false;
+ bool prefersDedicatedAllocation = false;
+ allocator->GetImageMemoryRequirements(*pImage, vkMemReq,
+ requiresDedicatedAllocation, prefersDedicatedAllocation);
+
+ res = allocator->AllocateMemory(
+ vkMemReq,
+ requiresDedicatedAllocation,
+ prefersDedicatedAllocation,
+ VK_NULL_HANDLE, // dedicatedBuffer
+ *pImage, // dedicatedImage
+ *pAllocationCreateInfo,
+ suballocType,
+ 1, // allocationCount
+ pAllocation);
+
+#if VMA_RECORDING_ENABLED
+ if(allocator->GetRecorder() != VMA_NULL)
+ {
+ allocator->GetRecorder()->RecordCreateImage(
+ allocator->GetCurrentFrameIndex(),
+ *pImageCreateInfo,
+ *pAllocationCreateInfo,
+ *pAllocation);
+ }
+#endif
+
+ if(res >= 0)
+ {
+ // 3. Bind image with memory.
+ if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0)
+ {
+ res = allocator->BindImageMemory(*pAllocation, 0, *pImage, VMA_NULL);
+ }
+ if(res >= 0)
+ {
+ // All steps succeeded.
+ #if VMA_STATS_STRING_ENABLED
+ (*pAllocation)->InitBufferImageUsage(pImageCreateInfo->usage);
+ #endif
+ if(pAllocationInfo != VMA_NULL)
+ {
+ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
+ }
+
+ return VK_SUCCESS;
+ }
+ allocator->FreeMemory(
+ 1, // allocationCount
+ pAllocation);
+ *pAllocation = VK_NULL_HANDLE;
+ (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
+ *pImage = VK_NULL_HANDLE;
+ return res;
+ }
+ (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
+ *pImage = VK_NULL_HANDLE;
+ return res;
+ }
+ return res;
+}
+
+void vmaDestroyImage(
+ VmaAllocator allocator,
+ VkImage image,
+ VmaAllocation allocation)
+{
+ VMA_ASSERT(allocator);
+
+ if(image == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE)
+ {
+ return;
+ }
+
+ VMA_DEBUG_LOG("vmaDestroyImage");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+#if VMA_RECORDING_ENABLED
+ if(allocator->GetRecorder() != VMA_NULL)
+ {
+ allocator->GetRecorder()->RecordDestroyImage(
+ allocator->GetCurrentFrameIndex(),
+ allocation);
+ }
+#endif
+
+ if(image != VK_NULL_HANDLE)
+ {
+ (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks());
+ }
+ if(allocation != VK_NULL_HANDLE)
+ {
+ allocator->FreeMemory(
+ 1, // allocationCount
+ &allocation);
+ }
+}
+
+#endif // #ifdef VMA_IMPLEMENTATION
|